Answer:
the intensity of the sun on the other planet is a hundredth of that of the intensity of the sun on earth.
That is,
Intensity of sun on the other planet, Iₒ = (intensity of the sun on earth, Iₑ)/100
Explanation:
Let the intensity of light be represented by I
Let the distance of the star be d
I ∝ (1/d²)
I = k/d²
For the earth,
Iₑ = k/dₑ²
k = Iₑdₑ²
For the other planet, let intensity be Iₒ and distance be dₒ
Iₒ = k/dₒ²
But dₒ = 10dₑ
Iₒ = k/(10dₑ)²
Iₒ = k/100dₑ²
But k = Iₑdₑ²
Iₒ = Iₑdₑ²/100dₑ² = Iₑ/100
Iₒ = Iₑ/100
Meaning the intensity of the sun on the other planet is a hundredth of that of the intensity on earth.
Answer:
Stellar black holes form when the center of a very massive star collapses in upon itself.
Answer:
At which point does the planet have the least gravitational force acting on it?
Explanation:
In an elliptical orbit, when a planet is at its furthest point from the Sun, it is under the least amount of gravity, meaning that the force of gravity is strongest when it is closest.
Answer:
5 m/s
Explanation:
Given that,
A vehicle is moving with 20m/s towards the east and another is moving 15m/s towards the west.
It is assumed to find the resultant velocity of the vehicle. Let east side is positive and west is negative. So,

Hence, the resultant velocity of the vehicle is equal to 5 m/s.