Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.
Answer:
0.7 hours
Explanation:
From the way back, we can calculate the distance between Irina's work and Irina's home. In fact, we know that the car takes 0.4 hourse traveling at 27 mph, so the distance covered should be

When Irina rides to work with her bike, she travels at a speed of 16 mph. So we can find the time she takes by dividing the total distance (10.8 miles) by her speed:

<h2>
Answer: 277.777 m</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told that the rock was<u> projected upward from the surface</u>, we will only use the equations related to the Y axis.
In this sense, the movement equations in the Y axis are:
(1)
(2)
Where:
is the rock's final position
is the rock's initial position
is the rock's initial velocity
is the final velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of the moon
As we know
, equation (2) is rewritten as:
(3)
On the other hand, the maximum height is accomplished when
:
(4)
(5)
Finding
:
(6)
Substituting (6) in (3):
(7)
(8) Now we can calculate the maximum height of the rock
(9)
Finally:
Answer:
2.63 cm
Explanation:
Hooke's law gives that the force F is equal to cy where c is spring constant and x is extension
Making c the subject of the formula then

Since F is gm but taking the given mass to be F

By substitution now considering F to be 3.3 kg

Answer:

Explanation:
The Coulomb's law states that the magnitude of the electrostatic force between two charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them:

In this case, we have
:
