Answer:
L = 41.09 Kg m2 / s The angular momentum does not depend on the time
Explanation:
The definition of angular momentum is
L = r x p
Where blacks indicate vectors
Let's apply this definition our case. Linear momentum
p = m v
Let's replace
L = m r x v
The given function is
x = 6.00 i ^ + 4.15 t j
^
We look for speed
v = dx / dt
v = 0 + 4.15 j ^
To evaluate the angular momentum one of the best ways is to use determinants
![L = m \left[\begin{array}{ccc}i&j&k\\6&4.15t&0\\0&4.15&0\end{array}\right]](https://tex.z-dn.net/?f=L%20%3D%20m%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C6%264.15t%260%5C%5C0%264.15%260%5Cend%7Barray%7D%5Cright%5D)
L = m 6 4.15 k ^
The other products give zero
Let's calculate
L = 1.65 6 4.15 k ^
L = 41.09 Kg m2 / s
The angular momentum does not depend on the time
Answer:
correct option is a. True
Explanation:
solution
the noise floor is AWGN ( additive white Gaussian noise )
and when viewed in the frequency domain, it is the continuous noise level
because as they have a uniform power over all the frequency.
so that it is additive white Gaussian noise
as we can say given statement is True
correct option a true
30grams
Explanation:
If a reaction starts with 30grams then the reaction should end with 30grams.
This in conformity with the law of conservation of mass.
- The law states that "in an isolated system, mass is neither created nor destroyed during chemical transformation".
- Mass is the quantity of matter contained in a substance.
- In chemical reactions, the mass of reactants must always be the same with the mass of the product baring any loss.
- In an isolated system, there is no exchange of energy and mass.
- Chemical systems are usually treated as isolated systems in which mass is conserved.
Learn more:
Chemical laws brainly.com/question/5896850
#learnwithBrainly
Answer:
Explanation:
Given that,
Magnetic field of 0.24T
B = 0.24T
Field perpendicular to plane i.e 90°
Rate of decrease of length of side of square is 5.4cm/s
dL/dt = 5.4cm/s = 0.054m/s
Since it is decreasing
Then, dL/dt = -0.054m/s
When L is 14cm, what is the EMF induced?
L = 14cm = 0.14m
EMF is give as
ε = - dΦ/dt
Where flux is given as
Φ = BA
Where A is the area of the square
A = L²
Then, Φ = BL²
Substituting this into the EMF
ε = - dΦ/dt
ε = - d(BL²)/dt
B is constant
ε = - Bd(L²)/dt
ε = -2BL dL/dr
ε = -2 × 0.24 × 0.14 × -0.054
ε = 3.63 × 10^-3 V
ε = 3.63mV
Answer:
weight
Explanation:
the weight of an object on an airline is one of the most important thing a pilot has to consider when prepping a flight and that is because if there is too much weight then the plane simply can't fly. imagine if everyone wanted to bring a 50 kg box. there are at least 200 people. that alone is 10,000 lg of weight than you have to factor in all the people, wires on the plane, and certain appliances that some planes have.