<span>The gravitational pull of the sun and moon combined
create larger than normal tides.</span>
To solve this exercise, it is necessary to apply the concepts of conservation of the moment especially in objects that experience an inelastic colposition.
They are expressed as,

Where,
= mass of the skier
= mass of the cat
= initial velocity of skier
= initial velocity of cat
= final velocity of both
Re-arrange to find V_f we have,



Once the final velocity is found it is possible to calculate the change in kinetic energy, so




Therefore the amount of kinetic energy converted in to internal energy is 819J
Lakes and rivers can be formed landforms from water
Answer:
156.96 N
Explanation:
F=ma where m is the mass and a is acceleration
Substituting 16 Kg for m and 9.81 m/s2 for g then
F=16*9.81= 156.96 N
If you increase the frequency of a sound wave four times, t<span>he speed will increase four times. The correct option among all the options that are given in the question is the first option or option "A". This also shows the frequency and speed of the waves are directly proportional to each other. I hope it helps you.</span>