a) 0.94 m
The work done by the snow to decelerate the paratrooper is equal to the change in kinetic energy of the man:

where:
is the force applied by the snow
d is the displacement of the man in the snow, so it is the depth of the snow that stopped him
m = 68 kg is the man's mass
v = 0 is the final speed of the man
u = 55 m/s is the initial speed of the man (when it touches the ground)
and where the negative sign in the work is due to the fact that the force exerted by the snow on the man (upward) is opposite to the displacement of the man (downward)
Solving the equation for d, we find:

b) -3740 kg m/s
The magnitude of the impulse exerted by the snow on the man is equal to the variation of momentum of the man:

where
m = 68 kg is the mass of the man
is the change in velocity of the man
Substituting,

Answer:
An interference pattern.
Explanation:
When we have two light source of the same frequency turned on close to each other, the light emitted by them will interfere since light is also a wave. This means that an interference pattern will appear in a screen put ahead of them, that is, bands of light and darkness where the waves are interfering constructively and destructively.
A car that experiences a deceleration of -41.62 m/s² and comes to a stop after 10.99 m has an initial velocity of 30.60 m/s.
A car experiences a deceleration (a) of -41.62 m/s² and comes to a stop (final velocity = v = 0 m/s) after 10.99 m (s).
We can calculate the initial velocity of the car (u) using the following kinematic equation.
![v^{2} = u^{2} + 2as\\\\u = \sqrt[]{v^{2}-2as} = \sqrt[]{(0m/s)^{2}-2(-42.61m/s^{2} )(10.99m)} = 30.60m/s](https://tex.z-dn.net/?f=v%5E%7B2%7D%20%3D%20u%5E%7B2%7D%20%2B%202as%5C%5C%5C%5Cu%20%3D%20%5Csqrt%5B%5D%7Bv%5E%7B2%7D-2as%7D%20%3D%20%5Csqrt%5B%5D%7B%280m%2Fs%29%5E%7B2%7D-2%28-42.61m%2Fs%5E%7B2%7D%20%29%2810.99m%29%7D%20%3D%2030.60m%2Fs)
A car that experiences a deceleration of -41.62 m/s² and comes to a stop after 10.99 m has an initial velocity of 30.60 m/s.
Learn more: brainly.com/question/14851168
The reason that says that Venus should have had water from the sources the same as the Earth, but all of those are gone is not a correct reason why Venus is dry. Venus is the hottest planet in the solar system because of the atmosphere it has. The atmosphere of Venus contains 95% of CO2 causing it be hot and dry.