Answer : The correct option is, +91 kJ/mole
Solution :
The balanced cell reaction will be,

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. Lead (Pb) undergoes reduction by gain of electrons and thus act as cathode.
First we have to calculate the standard electrode potential of the cell.
![E^0_{[Pb^{2+}/Pb]}=-0.13V](https://tex.z-dn.net/?f=E%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D%3D-0.13V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)

![E^0_{cell}=E^0_{[Pb^{2+}/Pb]}-E^0_{[Cu^{2+}/Cu]}](https://tex.z-dn.net/?f=E%5E0_%7Bcell%7D%3DE%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D-E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D)

Now we have to calculate the standard Gibbs free energy.
Formula used :

where,
= standard Gibbs free energy = ?
n = number of electrons = 2
F = Faraday constant = 96500 C/mole
= standard e.m.f of cell = -0.47 V
Now put all the given values in this formula, we get the Gibbs free energy.

Therefore, the standard Gibbs free energy is +91 kJ/mole
Answer:
Light as a wave: Light can be described (modeled) as an electromagnetic wave. In this model, a changing electric field creates a changing magnetic field. This changing magnetic field then creates a changing electric field and BOOM - you have light. ... So, Maxwell's equations do say that light is a wave.
Explanation:
Hope this helps
Answer:
Explanation:
Reactions occur when two or more molecules interact and the molecules change. Bonds between atoms are broken and created to form new molecules
Answer:
This is and ADDITION REACTION
Explanation:
Because your putting a compound and an element together