Answer:
982.5 kg/m³
Explanation:
When the temperature of a fluid increases, it dilates, and because of the variation of the volume, it's density will vary too. The density can be calculated by the expression:
ρ₁ = ρ₀/(1 + β*(t₁ - t₀))
Where ρ₁ is the final density, ρ₀ the initial density, β is the constant coefficient of volume expansion, t₁ the final temperature, and t₀ the initial temperature.
At t₀ = 4°C, the water desity is ρ₀ = 1,000 kg/m³. The value of the constant for water is β = 0.0002 m³/m³ °C, so, for t₁ = 93°C
ρ₁ = 1,000/(1 + 0.0002*(93 - 4))
ρ₁ = 1,000/(1+ 0.0178)
ρ₁ = 982.5 kg/m³
Answer: Magnets have a force which is known as no contact force. This force tries to attract the metallic objects near it, which makes it move.
Explanation:
Answer:
The final temperature at 1050 mmHg is 134.57
or 407.57 Kelvin.
Explanation:
Initial temperature = T = 55
= 328 K
Initial pressure = P = 845 mmHg
Assuming final to be temperature to be T' Kelvin
Final Pressure = P' = 1050 mmHg
The final temperature is obtained by following relation at constant volume

The final temperature is 407.57 K
Answer: 0.002 m³
Explanation:
We can use our unit conversions to find the volume in m³.
