6.7 mass because 1 atom equals 6.3 but if u add 4 it would be 6.7
Answer:
=> 1366.120 g/mL.
Explanation:
To determine the formula to use in solving such a problem, you have to consider what you have been given.
We have;
mass (m) = 25 Kg
Volume (v) = 18.3 mL.
From our question, we are to determine the density (rho) of the rock.
The formula:

First let's convert 25 Kg to g;
1 Kg = 1000 g
25 Kg = ?

= 25000 g
Substitute the values into the formula:

= 1366.120 g/mL.
Therefore, the density (rho) of the rock is 1366.120 g/mL.
Answer:
Explanation:
An atom is the smallest unit of an element that can take part in a chemical reaction. Atoms (and there corresponding symbols) mentioned in the question are
Lithium ⇒ Li
Carbon ⇒ C
Nitrogen ⇒ N
Potassium ⇒ K
Oxygen ⇒ O
Iron ⇒ Fe
Chlorine ⇒ Cl
A compound is substance that contains two or more atoms that are chemically combined and can be represented with a chemical formula. The compounds (and there corresponding formula) mentioned in the question are
Water ⇒ H₂O
Edible salt (sodium chloride) ⇒ NaCl
Chalk (calcium carbonate) ⇒ CaCO₃
Lime (calcium oxide) ⇒ CaO
Iodides (such as sodium iodide and potassium iodide) ⇒ NaI and KI respectively
Answer : The number of moles of oxygen needed are, 1.5 moles.
Explanation :
The balanced chemical reaction will be:

Now we have to calculate the moles of oxygen.
From the balanced chemical reaction we conclude that,
As, 6 moles of water vapor produces from 5 moles of oxygen
So, 1.80 moles of water vapor produces from
moles of oxygen
Therefore, the number of moles of oxygen needed are, 1.5 moles.
Answer:
Group 7A
Explanation:
The group 7A elements consists of the most reactive non-metals on the periodic table.
This group is known as the group of halogens. They consist of element fluorine, chlorine, bromine, iodine and astatine.
- The elements in this group have the highest electronegativity values.
- They have 7 valence electrons and requires just one electron to complete their octets.
- This way, they are highly reactive in their search for that single electron.