Answer:
Aluminum metal
Explanation:
In order to properly answer this or a similar question, we need to know some basic rules about galvanic cells and standard reduction potentials.
First of all, your strategy would be to find a trusted source or the table of standard reduction potentials. You would then need to find the half-equations for aluminum and gold reduction:


Since we have a galvanic cell, the overall reaction is spontaneous. A spontaneous reaction indicates that the overall cell potential should be positive.
Since one half-equation should be an oxidation reaction (oxidation is loss of electrons) and one should be a reduction reaction (reduction is gain of electrons), one of these should be reversed.
Thinking simply, if the overall cell potential would be obtained by adding the two potentials, in order to acquite a positive number in the sum of potentials, we may only reverse the half-equation of aluminum (this would change the sign of E to positive):
Notice that the overall cell potential upon summing is:

Meaning we obey the law of galvanic cells.
Since oxidation is loss of electrons, notice that the loss of electrons takes place in the half-equation of aluminum: solid aluminum electrode loses 3 electrons to become aluminum cation.
1. 1 M , 2 M , 1 M
2. 10 mol , 0.1 mol , 0.5 mol
3. 0.5 L , 6.6 L , 5/21 L
M = mol/L
Answer:
180,000 ants
Explanation:
For this problem we can create the following simple formula to solve this problem...
f(x) = 6x
where the variable x represents the number of ants that a single Anteater needs to eat per day. After a quick online search we can see that a single Anteater eats roughly 30,000 ants per day. If we use this value and plug it into the simple formula we can get the total number of ants 6 anteaters need to eat to survive.
f(x) = 6 * 30,000
f(x) = 180,000
Answer:
5 000 000 (5 million atoms)
Explanation:
Let us assume that a vanadium atom has a spherical shape.
diameter of a sphere = 2 x radius of the sphere
Thus,
Radius of a vanadium atom = 130 pm
= 130 x
m
The diameter of a vanadium atom = 2 x radius
= 2 x 130 x
= 260 x
m
Given a distance of 1.30 mm = 1.30 x
m,
The number of vanadium atoms required to span the distance = 
= 5000000
Therefore, the number of vanadium atom that would span a distance of 1.30 mm is 5 million.
When you mix 0.1 M HCI, with a drop of brothymol blje, this will make the incubator to change from blue to yellow.