Answer:
Salinity, along with temperature, determines the density of seawater, and hence its vertical flow patterns in thermohaline circulation. 2. Salinity records the physical processes affecting a water mass when it was last at the surface. Hope this helps!
Explanation:
You would have to use the ideal gas law for this:
PV=nRT
Pressure, Volume, n=moles, R gas constant, Temperature in Kelvin
P=nRT/V
(1.8mol)(62.36)(309K)/43.0L = 805mm Hg
Fe: 2 x 55.845 = 111.69
O: 3 x 15.9994= 47.9982
111.69 + 47.9982 = 159.69 g/mol
Answer: Provided in the explanation section
Explanation:
Our questions says that:
It is usually assumed that an action potential begins immediately at the cathode. If this were true, both methods for calculating conduction velocity would provide the same answer. However, when a strong stimulus intensity is used, the action potential may begin some distance away from the cathode. Under these conditions, the difference method would be more accurate.Did you observe any important difference between the conduction velocity values?
Answer to this :
By using the difference method, you subtract out any "uncertainties" involved in the measurement of latencies. Say for example, saw we are uncertain as to where the AP's are actually originating within the vicinity of the stimulating electrodes, this "error" will be introduced into both latency measurements, and therefore subtracted out when performing a difference method calculation.
However, the difference method is only experimentally sound when one is dealing with the same population of nerve fibres over the recording electrodes used, which is not the case with the sciatic nerve, as it is a short nerve, and thin at one end.
The non-uniformity of the nerve, and the difficulty in making accurate measurements of very small distances and latencies are principal points to consider when making conduction velocity measurements. Naturally if the nerve studied were longer and more uniform, we would improve the accuracy of our calculations.
cheers i hope this helped !!!!
Specific heat describes how much heat a substance takes to raise the temperature. Hence, Option (c) is correct
<h3>
What is Specific Heat ?</h3>
Specific heat capacity is the amount of heat energy required to raise the temperature of a substance per unit of mass.
The specific heat capacity of a material is a physical property.
It is also an example of an extensive property since its value is proportional to the size of the system being examined.
Specific heat describes how much heat a substance takes to raise the temperature. Hence, Option (c) is correct
Learn more about Specific heat here ;
brainly.com/question/21041726
#SPJ1