Answer:
The amount of energy transferred to the coin is 28.5 joules.
Explanation:
Have a great rest of your day
#TheWizzer
The complete question is shown in the image attached to this answer.
Answer:
C
Explanation:
Let us quickly remember that the EMF of a cell under non standard conditions in given by the Nernst equation.
This equation states that;
E = E°cell - 0.592/n log Q
Where
E = EMF under non standard conditions
E°cell= standard EMF of the cell
n = number of electrons transferred
Q = reaction quotient
If the reaction quotient is greater than 1 then cell potential is less than the standard cell potential.
The cell that generates the lowest cell potential is the cell depicted in option C because Q has the greatest positive value(Q<1).
Answer:
8 to 8.5 since that is the recommended and people usualy sleep more than that
Answer:
Each molecule contains one atom of A and one atom of B. The reaction does not use all of the atoms to form compounds.
A + B ⟶ Product
Particles: 6 8 6
If six A atoms form six product molecules, each molecule can contain only one A atom.
The formula of the product is ABₙ.
If n = 1, we need six atoms of B.
If n = 2, we need 12 atoms of B. However, we have only eight atoms of B, so the formula of the product must be AB.
Thus, 6A + 6B ⟶ 6AB, with two B atoms left over.
Explanation:
Credit goes to @znk
Hope it helps you :))
Answer:
The
for the reaction
will be 4.69.
Explanation:
The given equation is A(B) = 2B(g)
to evaluate equilibrium constant for 
![K_c=[B]^2[A]](https://tex.z-dn.net/?f=K_c%3D%5BB%5D%5E2%5BA%5D)
= 0.045
The reverse will be 
Then, ![K_c = \frac{[A]}{[B]^2}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cfrac%7B%5BA%5D%7D%7B%5BB%5D%5E2%7D)
= 
= 
The equilibrium constant for
will be


= 4.69
Therefore,
for the reaction
will be 4.69.