<span>26.833 liters
Aluminum oxide has a formula of Al</span>₂O₃,<span> which means for every mole of aluminum used, 1.5 moles of oxygen is required (3/2 = 1.5).
Given 42.5 g of aluminum divided by its atomic mass (26.9815385) gives 1.575 moles of aluminum.
Since it takes 1.5 moles of oxygen per mole of aluminum to make aluminum oxide, you'll need 2.363 moles of oxygen atoms.
Each molecule of oxygen gas has 2 oxygen atoms, so the moles of oxygen gas will be 2.363/2 = 1.1815
Finally, you need to calculate the volume of </span>1.1815 <span>moles of oxygen gas.
1 mole of gas at STP occupies 22.7 liters of volume. Therefore,
1.1815 * 22.7 = </span>26.8 liters <span>of oxygen gas.
</span>
The answer is nuclear energy
27.6 - 22.3 = 5.3; you simply subtract the old density from the new density.
The molarity of the resulting solution obtained by diluting the stock solution is 3 M
<h3>Data obtained from the question </h3>
- Molarity of stock solution (M₁) = 15 M
- Volume of stock solution (V₁) = 500 mL
- Volume of diluted solution (V₂) = 2.5 L = 2.5 × 1000 = 2500 mL
- Molarity of diluted solution (M₂) =?
<h3>How to determine the molarity of diluted solution </h3>
M₁V₁ = M₂V₂
15 × 500 = M₂ × 2500
7500 = M₂ × 2500
Divide both side by 2500
M₂ = 7500 / 2500
M₂ = 3 M
Thus, the volume of the resulting solution is 3 M
Learn more about dilution:
brainly.com/question/15022582
#SPJ1
Answer:
Yes, water can stay liquid below zero degrees Celsius. There are a few ways in which this can happen. The freezing point of water drops below zero degrees Celsius as you apply pressure. When we apply pressure to a liquid, we force the molecules to get closer together.
Explanation:
Hope this helps you. Have a nice day.^_^
Please mark as brainliest. It helps a lot:)