Answer18:
The quadrilateral ABCD is not a parallelogram
Answer19:
The quadrilateral ABCD is a parallelogram
Step-by-step explanation:
For question 18:
Given that vertices of a quadrilateral are A(-4,-1), B(-4,6), C(2,6) and D(2,-4)
The slope of a line is given m=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
Now,
The slope of a line AB:
m=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
m=![\frac{6-(-1)}{(-4)-(-4)}](https://tex.z-dn.net/?f=%5Cfrac%7B6-%28-1%29%7D%7B%28-4%29-%28-4%29%7D)
m=![\frac{7}{0}](https://tex.z-dn.net/?f=%5Cfrac%7B7%7D%7B0%7D)
The slope is 90 degree
The slope of a line BC:
m=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
m=![\frac{6-6}{(-4)-(-1)}](https://tex.z-dn.net/?f=%5Cfrac%7B6-6%7D%7B%28-4%29-%28-1%29%7D)
m=![\frac{0}{(-3)}](https://tex.z-dn.net/?f=%5Cfrac%7B0%7D%7B%28-3%29%7D)
The slope is zero degree
The slope of a line CD:
m=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
m=![\frac{(-4)-6}{2-2}](https://tex.z-dn.net/?f=%5Cfrac%7B%28-4%29-6%7D%7B2-2%7D)
m=![\frac{-10}{0}](https://tex.z-dn.net/?f=%5Cfrac%7B-10%7D%7B0%7D)
The slope is 90 degree
The slope of a line DA:
m=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
m=![\frac{(-1)-(-4)}{(-4)-(2)}](https://tex.z-dn.net/?f=%5Cfrac%7B%28-1%29-%28-4%29%7D%7B%28-4%29-%282%29%7D)
m=![\frac{3}{-6}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B-6%7D)
m=![\frac{-1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B2%7D)
The slope of the only line AB and CD are the same.
Thus, The quadrilateral ABCD is not a parallelogram
For question 19:
Given that vertices of a quadrilateral are A(-2,3), B(3,2), C(2,-1) and D(-3,0)
The slope of a line is given m=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
Now,
The slope of a line AB:
m=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
m=![\frac{2-3}{3-(-2)}](https://tex.z-dn.net/?f=%5Cfrac%7B2-3%7D%7B3-%28-2%29%7D)
m=![\frac{-1}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B5%7D)
The slope of a line BC:
m=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
m=![\frac{(-1)-2}{2-3}](https://tex.z-dn.net/?f=%5Cfrac%7B%28-1%29-2%7D%7B2-3%7D)
m=![\frac{-3}{-1}](https://tex.z-dn.net/?f=%5Cfrac%7B-3%7D%7B-1%7D)
m=3
The slope of a line CD:
m=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
m=![\frac{0-(-1)}{(-3)-2}](https://tex.z-dn.net/?f=%5Cfrac%7B0-%28-1%29%7D%7B%28-3%29-2%7D)
m=![\frac{-1}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B5%7D)
The slope of a line DA:
m=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
m=![\frac{3-0}{(-2)-(-3)}](https://tex.z-dn.net/?f=%5Cfrac%7B3-0%7D%7B%28-2%29-%28-3%29%7D)
m=3
The slope of the line AB and CD are the same
The slope of the line BC and DA are the same
Thus, The quadrilateral ABCD is a parallelogram