Answer:
6.75m
Explanation:
To calculate the distance in this question, we can use the formula:
S = ut + 1/2at^2
Where; S = distance
u = initial velocity = 0m/s
t = 3s
a = 1.5m/s^2
Hence:
S = (0 × 3) + 1/2 (1.5 × 3 × 3)
S = 0 + 1/2 (13.5)
S = 13.5/2
S = 6.75
Therefore, the car will travel 6.75m in 3seconds.
Units is the correct answer
Given data:
* The extension of the steel wire is 0.3 mm.
* The length of the wire is 4 m.
* The area of cross section of wire is,

* The young modulus of the steel is,

Solution:
The young modulus of the steel in terms of the force and extension is,

where F is the force acting on the steel wire,, l is the original length of the wire, dl is the extension of the wire, and A is the area,
Substituting the known values,

Thus, the force which produce the extension of 0.3 mm of the steel wire is 31.5 N.
Answer: 2.74
Explanation:
We can solve this problem using the stopping distance formula:

Where:
is the distance traveled by the car before it stops
is the car's initial velocity
is the coefficient of friction between the road and the tires
is the acceleration due gravity
Isolating
:

Solving:

This is the coefficient of friction
It would be A. 37.5 because if you multiply 50 and 15 it would be 750 then divide 20 it gives you 37.5.