1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ale4655 [162]
3 years ago
15

How many electrons does bromine (#35) have in its valence level?

Physics
2 answers:
kupik [55]3 years ago
7 0
Bromine has 7 electrons in their valence shell.......
Georgia [21]3 years ago
6 0

Bromine has 7 electrons in its valence shell. I had the same question and got it right.

You might be interested in
To drive a car at a constant velocity, you
kipiarov [429]

Answer:

the answer is C

Explanation:

The car, first is at rest and if you don't accelerate it won't move. When to hit the gas it will accelerate from rest

8 0
2 years ago
What is the potential energy of a puppy that weighs 18 N istting in a high chair 2 m high?
kykrilka [37]

Answer:

Potential energy =mass* acceleration due to gravity * height

mass*acceleration due to gravity =weight

hence potential energy of the puppy= weight * height

=18*2

=36 joule

6 0
3 years ago
If a football player collides with a goal post, what forces are at work?
AlekseyPX
When a footballer collides with the goal post, the forces at work are the action and reaction forces. The player will exert an action force on the goal post, and then a reaction force from the goal post will stop the player. The reaction force call will cause pain and even injury to the player.
7 0
3 years ago
Calcular la energía cinética de un cometa cuya masa es de 5×10 elevado a 31 kg y se mueve con velocidad de 216000km/h
PolarNik [594]

The kinetic energy is 9\cdot 10^{40}J.

Explanation:

The kinetic energy of an object is given by

K=\frac{1}{2}mv^2

where

K is the kinetic energy of the object

m is the mass of the object

v is the speed of the object

For the comet in this problem, we have:

m=5\cdot 10^{31} kg is its mass

v=216,000 km/h is the speed

First, we convert the speed  from km/h to m/s:

v=216,000 \frac{km}{h} \cdot \frac{1000 m/km}{3600 s/h}=60,000 m/s

Therefore, the kinetic energy of the comet is

K=\frac{1}{2}(5\cdot 10^{31})(60,000)^2=9\cdot 10^{40}J

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

5 0
3 years ago
Kyle is flying a helicopter at 125 m/s on a heading of 325 o . If a wind is blowing at 25 m/s toward a direction of 240.0 o , wh
frosja888 [35]

Answer:

The resultant velocity of the helicopter is \vec v_{H} = \left(89.894\,\frac{m}{s}, -93.348\,\frac{m}{s}\right).

Explanation:

Physically speaking, the resulting velocity of the helicopter (\vec v_{H}), measured in meters per second, is equal to the absolute velocity of the wind (\vec v_{W}), measured in meters per second, plus the velocity of the helicopter relative to wind (\vec v_{H/W}), also call velocity at still air, measured in meters per second. That is:

\vec v_{H} = \vec v_{W}+\vec v_{H/W} (1)

In addition, vectors in rectangular form are defined by the following expression:

\vec v = \|\vec v\| \cdot (\cos \alpha, \sin \alpha) (2)

Where:

\|\vec v\| - Magnitude, measured in meters per second.

\alpha - Direction angle, measured in sexagesimal degrees.

Then, (1) is expanded by applying (2):

\vec v_{H} = \|\vec v_{W}\| \cdot (\cos \alpha_{W},\sin \alpha_{W}) +\|\vec v_{H/W}\| \cdot (\cos \alpha_{H/W},\sin \alpha_{H/W}) (3)

\vec v_{H} = \left(\|\vec v_{W}\|\cdot \cos \alpha_{W}+\|\vec v_{H/W}\|\cdot \cos \alpha_{H/W}, \|\vec v_{W}\|\cdot \sin \alpha_{W}+\|\vec v_{H/W}\|\cdot \sin \alpha_{H/W} \right)

If we know that \|\vec v_{W}\| = 25\,\frac{m}{s}, \|\vec v_{H/W}\| = 125\,\frac{m}{s}, \alpha_{W} = 240^{\circ} and \alpha_{H/W} = 325^{\circ}, then the resulting velocity of the helicopter is:

\vec v_{H} = \left(\left(25\,\frac{m}{s} \right)\cdot \cos 240^{\circ}+\left(125\,\frac{m}{s} \right)\cdot \cos 325^{\circ}, \left(25\,\frac{m}{s} \right)\cdot \sin 240^{\circ}+\left(125\,\frac{m}{s} \right)\cdot \sin 325^{\circ}\right)\vec v_{H} = \left(89.894\,\frac{m}{s}, -93.348\,\frac{m}{s}\right)

The resultant velocity of the helicopter is \vec v_{H} = \left(89.894\,\frac{m}{s}, -93.348\,\frac{m}{s}\right).

8 0
3 years ago
Other questions:
  • You are using a hand-held sound level meter to measure the intensity level of the roars produced by a lion prowling in the high
    7·1 answer
  • How much time would Simpson save by increasing his average velocity to 26m/s East?
    13·1 answer
  • A car is behind a truck going 25 m/s on the highway. The car’s driver looks for an opportunity to pass, guessing that his car ca
    14·1 answer
  • A watt is a unit of energy per unit time, and one watt (W) is equal to one joule per second ( J ⋅ s − 1 ) J⋅s−1) . A 40.0 W 40.0
    6·1 answer
  • A dogsled team is shown pulling a man on a sled. Below the picture is a free body diagram with 4 force vectors. The first vector
    10·2 answers
  • b) Si la distancia entre el punto A y el punto B es de 650 metros aproximadamente y la estudiante tarda 15 minutos (1200 segundo
    7·1 answer
  • 2. Write an expression for the work
    12·1 answer
  • 18 kilogram Mass Blokus addressed a level surface if the coefficient of static friction between the Block in the surface is 0.6
    7·1 answer
  • Explain some of the things that you like to do, but could not if you did not have any thumbs.
    6·1 answer
  • Particle dislodgement in the filtration process is generally undesirable, except during?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!