Congress has the ability to override a veto by a two-thirds majority vote.
Hi there!
We can begin by finding the acceleration of the block.
Use the kinematic equation:

The block starts from rest, so:

Now, we can do a summation of forces of the block using Newton's Second Law:

mb = mass of the block
T = tension of string
Solve for tension:

Now, we can do a summation of torques for the wheel:

Rewrite:

We solved that the linear acceleration is 1.5 m/s², so we can solve for the angular acceleration using the following:

Now, plug in the values into the equation:

Answer:
112 m/s², 79.1°
Explanation:
In the x direction, given:
x₀ = 0 m
x = 19,500 cos 32.0° m
v₀ = 1810 cos 20.0° m/s
t = 9.20 s
Find: a
x = x₀ + v₀ t + ½ at²
19,500 cos 32.0° = 0 + (1810 cos 20.0°) (9.20) + ½ a (9.20)²
a = 21.01 m/s²
In the y direction, given:
y₀ = 0 m
y = 19,500 sin 32.0° m
v₀ = 1810 sin 20.0° m/s
t = 9.20 s
Find: a
y = y₀ + v₀ t + ½ at²
19,500 sin 32.0° = 0 + (1810 sin 20.0°) (9.20) + ½ a (9.20)²
a = 109.6 m/s²
The magnitude of the acceleration is:
a² = ax² + ay²
a² = (21.01)² + (109.6)²
a = 112 m/s²
And the direction is:
θ = atan(ay / ax)
θ = atan(109.6 / 21.01)
θ = 79.1°
Table sugar dissolves in water because when a sucrose molecule breaks from the sugar crystal, it is immediately surrounded by water molecules. The sucrose has hydroxyl groups that have a slight negative charge. ... Sand can't dissolve in waterbecause the 'spaces' in between the water particles. :)
Answer:
See the attached image and the explanation below
Explanation:
We must draw a schematic of the described problem, after the sketch it is necessary to make a free body diagram, at the time before and after cutting the cord.
These free body diagrams can be seen in the attached image.
First we perform a sum of forces on the x & y axes before cutting the cord, to be able to find the T tension of the wire. (This analysis can be seen in the attached image).
In this way we get the T-wire tension equation, before cutting.
Now we make another free body diagram, for the moment when the wire is cut (see in the attached diagram).
It is important to clarify that when the cord is cut, the system will no longer be in statically, therefore newton's second law will be used for summation of forces which will be equal to the product of mass by acceleration.
Finally with equations 1 and 2 we can find the K ratio.