My answer to this question honestly is no
1 Electrical Potential Energy, separating two charged plates will store energy as the plates want to return to their original position.
<span>2 Spring or Elastic can be stretched to store energy as it wants to return to rest </span>
<span>3 Gravitational energy is stored by moving something (ball or pendulum are both examples of this) against a gravity gradient (lifting an object) that wants to fall back down. </span>
Answer:
11250 N
Explanation:
From the question given above, the following data were obtained:
Normal force (R) = 15000 N
Coefficient of static friction (μ) = 0.75
Frictional force (F) =?
Friction and normal force are related by the following equation:
F = μR
Where:
F is the frictional force.
μ is the coefficient of static friction.
R is the normal force.
With the above formula, we can calculate the frictional force acting on the car as follow:
Normal force (R) = 15000 N
Coefficient of static friction (μ) = 0.75
Frictional force (F) =?
F = μR
F = 0.75 × 15000
F = 11250 N
Therefore, the frictional force acting on the car is 11250 N
An object that is in free fall seems to be (D) weightless.
Objects which are in free fall are said to be weightless because they only have the force of gravity acting upon them. Objects in free fall do not experience air resistance.