This problem uses the relationships among current
I, current density
J, and drift speed
vd. We are given the total of electrons that pass through the wire in
t = 3s and the area
A, so we use the following equation to to find
vd, from
J and the known electron density
n,
so:

<span>The current
I is any motion of charge from one region to another, so this is given by:
</span>

The magnitude of the current density is:

Being:

<span>
Finally, for the drift velocity magnitude vd, we find:
</span>
Notice: The current I is very high for this wire. The given values of the variables are a little bit odd
Answer:
lymph nodes
tonsils and adenoids
thymus
Explanation:
-Arteries are the blood vessels that take the blood that contains oxygen from the heart to the tissues and are part of the circulatory system.
-Lymph nodes are glands that take care of filtering the fluid that goes through the lympathic system and are also important for the functioning of the immune system.
-Capillaries are blood vessels that connect the veins and arteries and are part of the circulatory system.
-Tonsils and adenoids are located in the throat and they help protect the body from diseases and they are part of immune system and the lympathic system.
-Veins are the vessels that take the blood to the heart and they are part of the circulatory system.
-Thymus is an organ in which the T cells develop and they help protect the body against virus and bacteria and it is part of the immune and lympathic systems.
According to this, cells or organs that are considered to be part of both the immune and lymphatic systems are:
lymph nodes
tonsils and adenoids
thymus
The angular speed of the device is 1.03 rad/s.
<h3>What is the conservation of angular momentum?</h3>
A spinning system's ability to conserve angular momentum ensures that its spin will not change until it is subjected to an external torque; to put it another way, the rotation's speed will not change as long as the net torque is zero.
Using the conservation of angular momentum

Here, = the system's angular momentum before the collision
= 0 + mv
= (0.005)(450)(0.752)
= 1.692 kgm²/s
The moment of inertia of the system is given by
I = 2(M₁R₁² + M₂R₂²)+ mR₁²
= 2[(1.2)(0.8)² +(0.5)(0.3)²]+0.005(0.8)²
= 1.6292 kgm²
Here, = Iω
So,
1.692 = 1.6292(ω)
ω = 1.03 rad/s
To know more about the conservation of angular momentum, visit:
brainly.com/question/1597483
#SPJ1
Answer:
W= F × d
W= 2kn × 3.6
W= 7.2 J
Work is measured in Joules!