The initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C
<h3>How to calculate temperature?</h3>
The initial temperature of the copper metal can be calculated using the following formula on calorimetry:
Q = mc∆T
mc∆T (water) = - mc∆T (metal)
Where;
- m = mass
- c = specific heat capacity
- ∆T = change in temperature
According to this question, a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C. If the final temperature of water is 42.0 °C, the initial temperature of the copper is as follows:
400 × 4.18 × (42°C - 24°C) = 240 × 0.39 × (T - 24°C)
30,096 = 93.6T - 2246.4
93.6T = 32342.4
T = 345.5°C
Therefore, the initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C.
Learn more about temperature at: brainly.com/question/15267055
It is codominant inheritance because, if the placement of the A and B molecules on each cell is controlled by the proteins that are coded by different versions of the same gene, then <span>IA and IB </span><span>are codominant but both are dominant to I<span>o</span>. If a person receives an <span>IA </span>allele and a <span>IB</span> allele, their blood type is type AB, in which characteristics of both A and B antigens are expressed.
</span>
From the reactions, 1.04 g of H2 and 7.995 g of aluminum phosphate is produced.
<h3>What is stoichiometry?</h3>
The term stoichiometry has to do with the amount of substances that participates in a reaction.
For reaction 1;
Mg + 2HCl → MgCl₂ + H₂
Number of moles of Mg reacted = 12.5 g/24g/mol = 0.52 moles
If 1 mole of Mg produced 1 mole of H2
0.52 moles produces 0.52 moles of H2
Mass of H2 = 0.52 moles * 2 g/mol = 1.04 g
For reaction 2;
2Li3PO4 + Al2(SO4)3 → 3Li2SO4 + 2AIPO4
Number of moles of lithium phosphate = 7.5 g/116 g/mol = 0.065 moles
2 moles of Li3PO4 produced 2 moles of AIPO4
0.065 moles of Li3PO4 produced 0.065 moles of AIPO4
Mass of AIPO4 = 0.065 moles * 123 g/mol = 7.995 g
Learn more about stoichiometry:brainly.com/question/9743981
#SPJ1
A combustion reaction of an will generally produce CO2 and H20 -- carbon dioxide and water and/or an oxide
looking at the combustion material C2H2, you know that the end products will be CO2 and H20, so the question is how much of each will you get
well, look at the total amount of carbon atoms, 2 C2, which means a total of 4 carbon atoms in this reaction, since only CO2 has carbon atoms, that means there must be 4 CO2 as an end product and 4 CO2 will use up 4 of 5 O2 molecule leaving only 1 O2 molecule for the H2 reaction.
now O2 has a total of 2 oxygen molecules whereas H20 has only a single oxygen molecule, hence the end product must have 2 H20
check that the H atoms balance out on both sides