Answer:
Flour, Eggs, Water, Milk, Oil, Butter.
Answer:
The length is 12 inches.
Step-by-step explanation:
The volume of a rectangular prism is given by:
V=LBH
It was given that; the rectangular prism has a volume of 600 cubic inches.
The height of the prism is 5 inches and the width is 10 inches.
We want to find the length of the rectangular prism.
We substitute V=600, H=5,and W=10 into the formula:
600=5×10×L
600=20L


Step-by-step explanation:
<h3>
Need to FinD :</h3>
- We have to find the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0.

Here, we're asked to find out the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0. In order to find the solution we're gonna use trigonometric ratios to find the value of sinθ and cosθ. Let us consider, a right angled triangle, say PQR.
Where,
- PQ = Opposite side
- QR = Adjacent side
- RP = Hypotenuse
- ∠Q = 90°
- ∠C = θ
As we know that, 13 cosθ - 5 = 0 which is stated in the question. So, it can also be written as cosθ = 5/13. As per the cosine ratio, we know that,

Since, we know that,
- cosθ = 5/13
- QR (Adjacent side) = 5
- RP (Hypotenuse) = 13
So, we will find the PQ (Opposite side) in order to estimate the value of sinθ. So, by using the Pythagoras Theorem, we will find the PQ.
Therefore,



∴ Hence, the value of PQ (Opposite side) is 12. Now, in order to determine it's value, we will use the sine ratio.

Where,
- Opposite side = 12
- Hypotenuse = 13
Therefore,

Now, we have the values of sinθ and cosθ, that are 12/13 and 5/13 respectively. Now, finally we will find out the value of the following.

- By substituting the values, we get,


∴ Hence, the required answer is 17/7.
Answer:
The net forces exerted on the horse and cart are not the same, so they are not balanced forces.
Step-by-step explanation:
Please see the Newton's 2nd Law which states that an object accelerates if there is a net or unbalanced force on it. In this scenario there is just one force exerted on the wagon i.e: the force that the horse exerts on it. The wagon accelerates because the horse pulls on it. And the amount of acceleration equals the net force on the wagon divided by its mass.
As there are two forces the push and pull the horse; the wagon pulls the horse backwards, and the ground pushes the horse forward. The net force is determined by the relative sizes of these two forces.
If the ground pushes harder on the horse than the wagon pulls, there is a net force in the forward direction, and the horse accelerates forward, and if the wagon pulls harder on the horse than the ground pushes, there is a net force in the backward direction, and the horse accelerates backward.
If the force that the wagon exerts on the horse is the same size as the force that the ground exerts, the net force on the horse is zero, and the horse does not accelerate.