Answer:
Figure out how their teacher, teaches them and try to mimic that learning style. So the child's learns with one way and not multiple.
Step-by-step explanation:
Answer:
Step-by-step explanation:
B is the answer
<h3>
Answer: Choice D</h3>
==========================================================
Explanation:
If you plug in x = -2, then,
y = 4x-2
y = 4(-2)-2
y = -8-2
y = -10
This shows that the answer must be choice D, as this is the only answer that has x = -2 lead to y = -10. Note the first column of table D.
We could stop here if you wanted.
----------------------
If we kept going and plugged in x = 0, then,
y = 4x-2
y = 4(0)-2
y = 0-2
y = -2
We have x = 0 lead to y = -2. This matches with the second column of table D.
-----------------------
Lastly, if we plugged in x = 2, then we get,
y = 4x-2
y = 4(2)-2
y = 8-2
y = 6
So the third column of table D is also confirmed.
Step-by-step explanation:
Move expression to the left side and change its sign
5
y
−
3
+
10
y
2
−
y
−
6
−
y
y
+
2
=
0
Write
−
y
as a sum or difference
5
y
−
3
+
10
y
2
+
2
y
−
3
y
−
6
−
y
y
+
2
=
0
Factor out
y
and
−
3
from the expression
5
y
−
3
+
10
y
(
y
+
2
)
−
3
(
y
+
2
)
−
y
y
+
2
=
0
Factor out
y
+
2
from the expression
5
y
−
3
+
10
(
y
+
2
)
(
y
−
3
)
−
y
y
+
2
=
0
Write all numerators above the least common denominator
5
(
y
+
2
)
+
10
−
y
(
y
−
3
)
(
y
+
2
)
(
y
−
3
)
=
0
Distribute
5
and
−
y
through the parenthesis
5
y
+
10
+
10
−
y
2
+
3
y
(
y
+
2
)
(
y
−
3
)
=
0
Collect the like terms
8
y
+
20
−
y
2
(
y
+
2
)
(
y
−
3
)
=
0
Use the commutative property to reorder the terms
−
y
2
+
8
y
+
20
(
y
+
2
)
(
y
−
3
)
=
0
Write
8
y
as a sum or difference
−
y
2
+
10
y
−
2
y
+
20
(
y
+
2
)
(
y
−
3
)
=
0
Factor out
−
y
and
−
2
from the expression
−
y
(
y
−
10
)
−
2
(
y
−
10
)
(
y
+
2
)
(
y
−
3
)
=
0
Factor out
−
(
y
−
10
)
from the expression
−
(
y
−
10
)
(
y
+
2
)
(
y
+
2
)
(
y
−
3
)
=
0
Reduce the fraction with
y
+
2
−
y
−
10
y
−
3
=
0
Determine the sign of the fraction
−
y
−
10
y
−
3
=
0
Simplify
10
−
y
y
−
3
=
0
When the quotient of expressions equals
0
, the numerator has to be
0
10
−
y
=
0
Move the constant,
10
, to the right side and change its sign
−
y
=
−
10
Change the signs on both sides of the equation
y
=
10
Check if the solution is in the defined range
y
=
10
,
y
≠
3
,
y
≠
−
2
∴
y
=
10
Let x denote the length of the side of the garden which is covered fenced by a shed, and

be the width of the garden.
The perimeter of a rectangle is given by 2(length + width)
i.e.
which gives:

For the area to be maximum, the differentiation of A with respect to x must be equal to 0.
i.e.

Therefore, the maximum area of the garden enclosed is given by