I believe it's Mercury, because the only other option would be Pluto and it's not even considered a planet anymore
Hope this helps
The two factors that affect the period of a pendulum are the length of the string and the distance in which the pendulum falls.
Hope this helps! I would greatly appreciate a brainliest! :)
a). Perihelion . . . the point in Earth's orbit that's closest to the Sun.
We pass it every year early in January.
b). Aphelion . . . the point in Earth's orbit that's farthest from the Sun.
We pass it every year early in July.
c). Proxihelion . . . a made-up, meaningless word
d). Equinox . . . the points on the map of the stars where the Sun
appears to be on March 21 and September 21.
Since this is a distance/time graph, the speed at any time is the slope
of the part of the graph that's directly over that time on the x-axis.
At time t1 = 2.0 s
That's in the middle of the first segment of the graph,
that extends from zero to 3 seconds.
Its slope is 7/3 . v1 = 7/3 m/s .
At time t2 = 4.0 s
That's in the middle of the horizontal part of the graph
that runs from 3 to 6 seconds.
Its slope is zero.
v2 = zero .
At time t3 = 13 s.
That's in the middle of the part of the graph that's sloping down,
between 11 and 16 seconds.
Its slope is -3/5 . v3 = -0.6 m/s .
Explanation:
It is given that,
Bandwidth of a laser source, 
(b) Let t is the time separation of sections of sections of the light wave that can still interfere. The time period is given by :



(a) Let h is the coherence length of the source. It is given by :

c is the speed of light

l = 0.0099 m
Hence, this is the required solution.