Answer:
The law of multiple proportions states that when two elements can combine in different ratios to form different compounds, the masses of the element combining with the fixed mass of another element result in whole number ratios. This shows that the law of multiple proportions is followed
Explanation:
Answer:
F = 9.82 N
Explanation:
given,
Force x-component = 5.69 N
Force y-component = 8 N
magnitude of force = ?
Resultant of force
![F = \sqrt{F_x^2 + F_y^2}](https://tex.z-dn.net/?f=F%20%3D%20%5Csqrt%7BF_x%5E2%20%2B%20F_y%5E2%7D)
![F = \sqrt{5.69^2 + 8^2}](https://tex.z-dn.net/?f=F%20%3D%20%5Csqrt%7B5.69%5E2%20%2B%208%5E2%7D)
![F = \sqrt{32.3761 + 64}](https://tex.z-dn.net/?f=F%20%3D%20%5Csqrt%7B32.3761%20%2B%2064%7D)
![F = \sqrt{96.3761}](https://tex.z-dn.net/?f=F%20%3D%20%5Csqrt%7B96.3761%7D)
F = 9.82 N
Hence, the magnitude of force is equal to 9.82 N
While falling, both the sheet of paper and the paper ball experience air resistance. But the surface area of the sheet is much more than that of the spherical ball. And air resistance varies directly with surface area. Hence the sheet experiences more air resistance than the ball and it falls more slowly than the paper ball.
Hope that helps!
Answer:
Since the area of the perfect square is 11650, and all of a squares sides ar equal, we just need to find the square root.
The square root of 11650 is 107.935166.
One side of the square is 107.935166
107.935166 x 107.935166 = 11650
(っ◔◡◔)っ ♥ Hope It Helps ♥
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,
![f=\frac{c}{\lambda}](https://tex.z-dn.net/?f=f%3D%5Cfrac%7Bc%7D%7B%5Clambda%7D)
substituting the values in the equation we get,
![f=\frac{3.0\times 10^8 m/s}{2.9m}](https://tex.z-dn.net/?f=f%3D%5Cfrac%7B3.0%5Ctimes%2010%5E8%20m%2Fs%7D%7B2.9m%7D)
f = 1.03 x 10⁸Hz
Now,
The time period (T) = ![\frac{1}{f}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf%7D)
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m