1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxandr [17]
3 years ago
10

A speaker generates a continuous tone of 440 Hz. In the drawing, sound travels into a tube that splits into two segments, one lo

nger than the other. The sound waves recombine before being detected by a microphone. The speed of sound in air is 339 m/s. What is the minimum difference in the lengths of the two paths for sound travel if the waves arrive in phase at the microphone?
Physics
1 answer:
chubhunter [2.5K]3 years ago
7 0

Answer:

The minimum difference between the lengths of the two tubes should be 0.385 meters.

Explanation:

As we known that for any two waves to arrive in phase at any point the difference in the path traveled by the waves should be an integral multiple of the wavelength of the wave.

Mathematically we can write:

\Delta x=n\frac{\lambda }{2}

For the given wave we have

\lambda =\frac{v}{\nu }

Applying values we get

\lambda =\frac{339}{440 }=0.77m

Thus the minimum difference in the lengths of the tubes can be obtained by putting the value of n = 1

\therefore \Delta x=1\times \frac{0.77}{2}=0.385m

You might be interested in
A cord of negligible mass runs around two massless, frictionless pulleys. A canister with mass m = 20 kg hangs from one pulley.
photoshop1234 [79]

(a) 196 N

The equation of the forces on the side of the cord where the force F is applied is:

F-T=0 (1)

where T is the tension in the cord.

On the other side of the cord, the equation of the forces on the canister is

T-mg = ma (2)

where

m = 20 kg is the mass of the canister

g=9.8 m/s^2 is the acceleration of gravity

a is the acceleration

From (1),

T=F

Substituting into (2),

F-mg = ma\\F=m(g+a)

We want the canister to move at constant speed, so

a = 0

And therefore:

F=mg=(20)(9.8)=196 N

b) 2.0 cm

The cord is inextensible, this means that the acceleration of its parts are the same. Therefore, the acceleration of the free end must be the same as the acceleration of the canister: and this means that the two parts also cover the same distance in the same time.

Therefore, the free end of the cord must be moved exactly the same as the canister, by 2.0 cm.

c) 3.92 J, the same

The work done by the tension in the cord is

W_T = T d

where

T is the tension

d = 2.0 cm = 0.02 m is the displacement

As we said in part (a), the tension in the cord is equal to the force applied to the free end:

T = F

So

T = 196 N

Therefore, the work done by the tension is

W=(196)(0.02)=3.92 J

And since the force applied (F) is the same, then the work done by you when pulling the cord is exactly the same.

(d) -3.92 J

The weight of the canister is

F_g = mg =(20 kg)(9.8 m/s^2)=196 N

However, the direction of the force of gravity is opposite to the displacement. Therefore, the work done by gravity is negative:

W_g = - F_g d

And substituting,

W_g=-(196)(0.02)=-3.92 J

(e) Zero

The net work done on the canister can be simply calculated by adding the work done by the tension in the cord and the weight of the canister:

W=W_T+W_g = 3.92 + (-3.92 ) = 0

This is in agreement with the work-energy theorem, which states that the work done on an object is equal to its change in kinetic energy. In this situation, the canister is moving at constant speed, so its kinetic energy is not change: therefore,

\Delta K = 0 (change in kinetic energy = 0)

and so, the work done on it is also zero.

(f) The pulley system changes the direction of the force applied

This is a simple pulley system, which means  that the system does not multiply the force applied in input. In fact, the mechanical advantage of the system is

MA=\frac{F_{out}}{F_{in}}

where:

F_{out} is the output force, which is the weight of the canister

F_{in} is the force in input, which is F

So, the mechanical advantage is 1:

MA=\frac{196 N}{196 N}=1

From a point of view of energy, therefore, there is no advantage in this system.

However, the advantage offered by the pulley system concerns the direction of the force: in fact, it changes the direction of the applied force (which is F, downward) into the tension of the cord (which is upward on the canister).

6 0
3 years ago
Describe how the rider exerts a force on the motorcycle
LUCKY_DIMON [66]
Well, one example is that the weight of the rider puts downward force on the motorcycle, which is absorbed by the suspension or shocks or something.
4 0
3 years ago
Infer why the doppler effect can or can not occur in all waves.
Darya [45]

Answer:

it can occur in all waves because all wave have a frequency

8 0
2 years ago
Assume: The bullet penetrates into the block and stops due to its friction with the block. The compound system of the block plus
tino4ka555 [31]

Answer:

1)4.7334J

2)225.4m/s

Explanation:

v= the Velocity of both the bullet and the block after collision=?

H= Height of the bullet along circular arc= 10cm=0.1m

g= acceleration due to gravity= 9.81m/s^2

R= Radius of the circular arc= 18cm= 0.18m

m= Mass of the bullet= 30g= 0.03kg

M= Mass of the block = 4.8 kg

Using the law of conservation of energy

Potential energy of the system= Kinectic energy of the system

1/2 mv^2= mgh..............eqn(1)

But we have two mass m and M

We can write eqn(1) as

0.5(m+M)v^2= (m+M)gh ...........eqn(2)

If we make "v" subject of the formula we have

v = √2gh

Then substitute the values we have

= √2 x 9.81 x 0.1 = 1.40m/s

1) We can now calculate the total energy of the system after collision as

KE = 1/2(m+M)v^2

= 1/2 x (0.03+4.8) x (1.40)^2

KE = 4.7334J

Hence, the total energy of the composite system at any time after the collision is 4.7334J

2)to determine the initial velocity of the bullet.

From law of momentum conservation, which can be expressed as

m1u1+m2u2=(m1+m2)v

Where the initial Velocity of the bullet u1= ?

Final velocity of the bullet = 0

the Velocity of both the bullet and the block after collision=v= 1.40m/s

(0.03×u1) +(u×0)= (4.8+0.03)1.4

0.03u1=6.762

U1=225.4m/s

Hence, the initial velocity of the bullet is 225.4m/s

3 0
3 years ago
Definition of AM and Fm Wave? in your own word
vfiekz [6]

Answer:

In AM broadcasting, the amplitude of the carrier wave is modulated to encode the original sound. In FM broadcasting, the frequency of the carrier wave is modulated to encode the sound. A radio receiver extracts the original program sound from the modulated radio signal and reproduces the sound in a loudspeaker.

8 0
3 years ago
Other questions:
  • How is the direction of current defined by convention
    7·1 answer
  • Which describes an object in projectile motion? Check all that apply.A.Gravity acts to pull the object downB.The object moves in
    6·1 answer
  • What statement used during the scientific method is falsifiable or framed in a way that allow other scientist to prove it false
    8·1 answer
  • What is a name given to the areas of an atom where electrons are found?
    5·1 answer
  • Dois carros, a e b, móveis se em uma estrada retilínea com volocidade constante,vª =20m/s e v=18 m/s , respectivamente. O carro
    14·1 answer
  • How much energy must be absorbed by water with a mass of 0.5 kg in order to raise the temperature from 30°C to 65°C? Note: Water
    15·1 answer
  • The movement of the liquid in a thermometer shows changes in temperature. An increase in temperature indicates the molecules in
    15·1 answer
  • Is Nuclear Energy renewable? Why or why not? Use in your own words.
    6·2 answers
  • A ticker-tape is moved through a ticker-timer for 5 seconds . if the timer is operating at 25 Hz. i.How many dots would have bee
    8·1 answer
  • Caroline, a piano tuner, suspects that a piano's G4 key is out of tune. Normally, she would play the key along with her G4 tunin
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!