Answer:
As magma rises, pressure Decreases , causing dissolved gases to expand and form bubbles. The size of the bubbles increases, exerting a lot of force. The force of the expanding gases pushes the magma from the Magma chamber up through the Pipe . Molten rock and gas explode through the Vent , which is at or near the top of the volcano.
Explanation:
Explanation:
Momentum is conserved.
a) In the first scenario, Olaf and the ball have the same final velocity.
mu = (M + m) v
(0.400 kg) (10.9 m/s) = (70.2 kg + 0.400 kg) v
v = 0.0618 m/s
b) In the second scenario, the ball has a final velocity of 8.10 m/s in the opposite direction.
mu = mv + MV
(0.400 kg) (10.9 m/s) = (0.400 kg) (-8.10 m/s) + (70.2 kg) v
v = 0.108 m/s
Answer:
the potential energy of this body is 245 J.
Explanation:
Given;
mass of the body, m = 250 g = 0.25 kg
height from which the body was dropped, h = 100 m
acceleration due to gravity, g = 9.8 m/s²
The potential energy of this body is calculated as;
P.E = mgh
substitute the given values and solve for the potential energy of this body;
P.E = 0.25 x 9.8 x 100
P.E = 245 J.
Therefore, the potential energy of this body is 245 J.