Answer:

Explanation:
The equation of equlibrium for the box is:

The formula for the acceleration, given in
, is:

Velocity can be derived from the following definition of acceleration:





![v =\sqrt{2\cdot[(2.278\,\frac{m}{s^{2}})\cdot x |_{0\,m}^{27\,m}-(0.034\,\frac{1}{s^{2}})\cdot x^{2}|_{0\,m}^{27\,m}] }](https://tex.z-dn.net/?f=v%20%3D%5Csqrt%7B2%5Ccdot%5B%282.278%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%29%5Ccdot%20x%20%7C_%7B0%5C%2Cm%7D%5E%7B27%5C%2Cm%7D-%280.034%5C%2C%5Cfrac%7B1%7D%7Bs%5E%7B2%7D%7D%29%5Ccdot%20x%5E%7B2%7D%7C_%7B0%5C%2Cm%7D%5E%7B27%5C%2Cm%7D%5D%20%20%7D)
The speed after the box has travelled 17 meters is:

Answer:
12 mins
Explanation:
The distance covered is 5 km, divide this by 25 to get the fraction of an hour it takes. Doing this you get .2, times this by 60 min (1 hour) to get how many mins it takes
Wouldn't everything fall?
I think is between A&B
I think I would answer B