The answer is five because if you do 8×n=40 and if you count by five you would get the answer is 5
Answer:
a) The answer is 11,7m
b) The time it takes to fall will be shorter
Explanation:
We will use the next semi-parabolic movement equations
Where g(gravity acceleration)=9,81m/s^2
Also Xi, Hi and Viy are zero, as the stones Billy-Jones is kicking stay still before he moves them, so we take that point as the reference point
The first we must do is to find how much time the stones take to fall, this way:
Then t=1,54s
After that we need to replace t to find H, this way
Then H=11,7m
b) The stones will fall faster as the stones will be kicked harder, it will cause the stones move faster, it means, more horizontal velocity. In order to see it better we could assume the actual velocity is two times more than it is, so it will give us half of the time, this way:
Then, t=0,77
by angular momentum conservation we will have
angular momentum of child + angular momentum of merry go round = 0
angular momentum of child = mvR
m = mass of child
R = radius of child
v = speed = 2 m/s
now let's say moment of inertia of merry go round is I
so we will have


so merry go round will turn in opposite direction with above speed
i believ that the answer would be
the acceleration of B is 0.2
<u>Answer
</u>
A. 1 and 2
<u>Explanation
</u>
At point 1 we have the highest potential energy and the kinetic energy is zero.
At 2 the potential energy is minimum and the kinetic energy is maximum.
The law of conservation of energy says that energy cannot be created nor destroyed. So, the change in P.E = Change in K.E.
P.E = height × gravity × mass. The height referred here is the perpendicular height. Gravity and mass are constant in this case.
From the diagram it can be seen clearly that the vertical height from 2 to 1 is much greater than from 4 to 3.
This shows that the change in P.E is greater between 1 and 2 and so is kinetic energy.