Answer:
Refer below
Step-by-step explanation:
a) a and b are the lower and higher values of the interval for which uniform distribution is defined.
Here a= 6 and b =10
b) Mean of the uniform distribution= (a+b)/2 = (6+10)/2 =8
Or int x (1/4) dx = x^2/8 = 8
c) Variance of the uniform distribution = (b^2-a^2)/12 = (100-64)/12
= 36/12 =3
Std dev = sq rt of 3 = 1.732
d) To find total area
PDF of the distribution = 1/(b-a) = 1/4, 6<x<10
Area = \int 6 to 10 of 1/4 dx
= x/4
Subtitute limits
= (10-6)/4 =1
So total area = 1
d)P(X>7) = int 7 to 10 of 1/4 dx = 3/4
e) P(7<x<9) = Int 7 to 9 of 1/4 dx = 2/4 = 1/2
Answer:
2a) quotient
2b) product
3a) addends
3b) factors
4a) bolt, direction
4b)when you move to the left it is negative; when you move to the right it is positive
Step-by-step explanation:
9514 1404 393
Answer:
a) x = -3
b) y = (28/27)x -27
Step-by-step explanation:
a) College street has a slope of 0, so is a horizontal line. 2nd Ave is perpendicular, so is a vertical line, described by an equation of the form ...
x = constant
For 2nd Ave to intersect the point (-3, 1), the constant must match that x-coordinate. The equation is ...
x = -3
__
b) Since Ace Rd is perpendicular to Davidson St, its slope will be the opposite reciprocal of the slope of Davidson St. The slope of Ace Rd is ...
m = -1/(-27/28) = 28/27
Using the point-slope equation for a line, we can model Ace Rd as ...
y -y1 = m(x -x1)
y -1 = (28/27)(x -27)
y = (28/27)x -27
Answer:
a) 5
Step-by-step explanation:
Put them into slope intercept form AKA y=mx+b: -5=m1+b <em>and</em> 5=m3+b
Subtract the equations to get -10=-2m
Divide both sides by two to get: 5=m
Hope this helps! (^-^)