The order of the answers are as follows:
B
C
D
A
Answer:
Metallic bonding occurs when you have a metal in the solid or liquid state. The s and p valence electrons of metals are loosely held. They leave their “own” metal atoms. This forms a "sea" of electrons that surrounds the metal cations.
Explanation:
Answer:
As long as it is a blank solution of the reagent, the Absorbance will be 0 regardless of the path length.
Explanation:
Absorbance of light by a reagent of concentration c, is given as
A = εcl
A = Absorbance
ε = molar absorptivity
c = concentration of reagent.
l = length of light path or length of the solution the light passes through.
So, if all.other factors are held constant, If a sample for spectrophotometric analysis is placed in a 10-cm cell, the absorbance will be 10 times greater than the absorbance in a 1-cm cell.
But the reagent blank solution is called a blank solution because it lacks the given reagent. A blank solution does not contain detectable amounts of the reagent under consideration. That is, the concentration of reagent in the blank solution is 0.
Hence, the Absorbance is subsequently 0. And increasing or decreasing the path length of light will not change anything. As long as it is a blank solution of the reagent, the Absorbance will be 0 regardless of the path length.
Hope this Helps!!!
I will present a simple reaction so we can do this conversion:
2H₂ + O₂ → 2H₂O
We will assume we have 32 g of O₂ and we want to find the amount of water, assuming this reaction goes to completion. We must first convert the initial mass to moles, which we do using the molar mass in units of g/mol. The molar mass of O₂ is 32 g/mol.
32 g O₂ ÷ 32 g/mol = 1 mole O₂.
Now that we have moles of oxygen, we use the molar coefficients to find the ratio of water molecules to oxygen molecules. We can see there are 2 moles of water for every 1 mole of oxygen.
1 moles O₂ x (2 mol H₂O/ 1 mol O₂) = 2 moles H₂O
Now that we have the moles of water, we can convert this amount into grams using the molar mass of water, which is 18 g/mol.
2 moles H₂O x 18 g/mol = 36 g H₂O
Now we have successfully converted the mass of one molecule to the mass of another.
Answer:
Annual rings of trees in temperate forests
Explanation:
because fluctuations in ground surface temperatures propagate slowly downwards into the earth as a "temperature wave".