Answer:
0.7g of HCl
Explanation:
First, let us write a balanced equation for the reaction between HCl and Al(OH)3.
This is illustrated below:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
Next, let us obtain the masses of Al(OH)3 and HCl that reacted together according to the equation. This can be achieved as shown below:
Molar Mass of Al(OH)3 = 27 + 3(16+1)
= 27 + 3(17) = 27 + 51 = 78g/mol.
Molar Mass of HCl = 1 + 35.5 = 36.5g/mol
Mass of HCl from the balanced equation = 3 x 36.5 = 109.5g
Now we can obtain the mass of HCl that would react with 0.5g of Al(OH)3. This can be achieved as follow:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
From the equation above,
78g of Al(OH)3 reacted with 109.5g of HCl.
Therefore, 0.5g of Al(OH)3 will react with = (0.5 x 109.5)/78 = 0.7g of HCl
Answer:
235/92U+10n→144/54Xe+90/38Sr+2/10n
Explanation:
- The nuclear reaction for the neutron-induced fission of u−235 to form xe−144 and sr−90 is represented by;
235/92U+10n→144/54Xe+90/38Sr+2/10n
- In nuclear fission reactions a heavy nuclide is split into two light nuclides and is coupled by the release of energy.
Answer:
8 m
Explanation:
3.0 x 10*8 divided by 3.75 x 10*7 = 8 m
Mass of molecule (g) = Mr of substance over avarogado constant