Answer is: the partial pressure of the helium gas is 0.158 atm.
p(mixture) = 0.48 atm; total pressure.
m(H₂) = 1.0 g; mass of hydrogen gas.
n(H₂) = m(H₂) ÷ M(H₂).
n(H₂) = 1.0 g ÷ 2 g/mol.
n(H₂) = 0.5 mol; amount of hydrogen.
m(He) = 1.0 g; mass of helium.
n(He) = 1 g ÷ 4 g/mol.
n(He) = 0.25 mol; amount of helium.
χ(H₂) = 0.5 mol ÷ 0.75 mol.
χ(H₂) = 0.67; mole fraction of hydrogen.
χ(He) = 0.25 mol ÷ 0.75 mol.
χ(He) = 0.33; mole fraction of helium.
p(He) = 0.33 · 0.48 atm.
p(He) = 0.158 atm; the partial pressure of the helium gas.
Answer: A persistent or non-volatile chemical agent can remain on a surface for more than 24 hours.
Explanation:
Non-volatile substance is defined as the one which does not readily evaporate into its surrounding. Generally, a non-volatile substance has strong intermolecular forces between its molecules.
A non-volatile substance will take more than 24 hours to remain on the surface.
On the other hand, a substance with weak intermolecular forces present in its molecules will readily evaporate into the atmosphere.
For example, acetic acid is a volatile substance and quickly evaporates into the atmosphere.
Thus, we can conclude that a persistent or non-volatile chemical agent can remain on a surface for more than 24 hours.
1- evaporation 2- transpiration 3-condensation 4- precipitation
Answer:
law of independent assortment
Answer:
Gram molecular mass = 40 + (35.5)2 = 111g
Mass of
in 1 mole = 111g
Mass of
in 0.15 mole = 111 × 0.15 = 16.65 g