Percent error can be calculated by the difference of the theoretical value and the measured value divided by the theoretical value multiplied by 100 percent.
% error = 27.26 - 27.2 / 27.26 x100
% error = 0.22%
A value close to zero would mean that the measured value is more or less near the actual value.
Answer:
The molarity is 0.56
Explanation:
In a mixture, the chemical present in the greatest amount is called a solvent, while the other components are called solutes. Then, the molarity or molar concentration is the number of moles of solute per liter of solution.
In other words, molarity is the number of moles of solute that are dissolved in a given volume.
The Molarity of a solution is determined by:

Molarity is expressed in units (
).
Then you must know the number of moles of Cu(NO₂)₂. For that it is necessary to know the molar mass. Being:
-
Cu: 63.54 g/mol
- N: 14 g/mol
- O: 16 g/mol
the molar mass of Cu(NO₂)₂ is:
Cu(NO₂)₂= 63.54 g/mol + 2*(14 g/mol + 2* 16 g/mol)= 155.54 g/mol
Now the following rule of three applies: if 155.54 g are in 1 mole of the compound, 225 g in how many moles are they?

moles= 1.45
So you know:
- number of moles of solute= 1.45 moles
- volume=2.59 L
Replacing in the definition of molarity:

Molarity= 0.56
<u><em>The molarity is 0.56</em></u>
<u><em></em></u>
<u>Answer: </u>The correct answer is Silver.
<u>Explanation:</u>
Specific heat of fusion is defined as the amount of heat which is required to raise the temperature of 1 gram of a substance to 1°C. It is generally expressed in kJ/mol
We are required to find the substance which require more heat. For that we need to know the specific heat of all the substances.
The substance which have the highest specific heat, will require more heat.
The specific heat of the given substances are:
Silver = 11.3 kJ/mol
Sulfur = 1.7175 kJ/mol
Water = 5.98 kJ/mol
Lead = 4.799 kJ/mol
The specific heat of silver is the highest and hence, will require more heat.
Hence, the correct answer is silver.
<span>The water cycle has no starting point. But, we'll begin in the oceans, since that is where most of Earth's water exists</span>