Answer:
Ka = 1.52 E-5
Explanation:
- CH3-(CH2)2-COOH ↔ CH3(CH2)2COO- + H3O+
⇒ Ka = [H3O+][CH3)CH2)2COO-] / [CH3(CH2)2COOH]
mass balance:
⇒<em> C</em> CH3(CH2)2COOH = [CH3(CH2)2COO-] + [CH3(CH2)2COOH] = 1.0 M
charge balance:
⇒ [H3O+] = [CH3(CH2)2COO-]
⇒ Ka = [H3O+]²/(1 - [H3O+])
∴ pH = 2.41 = - Log [H3O+]
⇒ [H3O+] = 3.89 E-3 M
⇒ Ka = (3.89 E-3)² / ( 1 - 3.89 E-3 )
⇒ Ka = 1.519 E-5
Ok first, we have to create a balanced equation for the dissolution of nitrous acid.
HNO2 <-> H(+) + NO2(-)
Next, create an ICE table
HNO2 <--> H+ NO2-
[]i 0.139M 0M 0M
Δ[] -x +x +x
[]f 0.139-x x x
Then, using the concentration equation, you get
4.5x10^-4 = [H+][NO2-]/[HNO2]
4.5x10^-4 = x*x / .139 - x
However, because the Ka value for nitrous acid is lower than 10^-3, we can assume the amount it dissociates is negligable,
assume 0.139-x ≈ 0.139
4.5x10^-4 = x^2/0.139
Then, we solve for x by first multiplying both sides by 0.139 and then taking the square root of both sides.
We get the final concentrations of [H+] and [NO2-] to be x, which equals 0.007M.
Then to find percent dissociation, you do final concentration/initial concentration.
0.007M/0.139M = .0503 or
≈5.03% dissociation.
When lithium reacts to chlorine it goes from having no charge to +1 charge, while chlorine goes from neutral to having -1 charge.
Answer:
a) Step 1:

Step 2:

b) The overall balanced reaction for given process is ;

Explanation:
a)
Galena = 
Lead(II) oxide = 
Sulfur dioxide = 
Step 1:
Roasting the galena in oxygen gas to form lead(II) oxide and sulfur dioxide.
Balanced equation of step 1:
..[1]
Step 2:
Heating the metal oxide with more galena forms the molten metal and more sulfur dioxide.
Balanced equation of step 2:
..[2]
b)
For over all reaction add [1] and [2]. The overall balanced reaction for given process is ;

Answer:
a) dissolving sugar in water to form a mixture of sugar and water
Explanation:
exothermic reaction is reaction in which is heat is released during the reaction and endothermic reaction is a reaction in which heat is needed or required for the reaction to take place
all the options excluding option A) is exothermic as during the process of formation of bonds in oxidation, heat is released. rusting too is a slow form of oxidation and thus an exothermic reaction.
dissolving sugar in water is not exothermic reaction because their is no heat released. the sugar molecules simply disperses in the water molecules and form a solution.