Answer: Option E. There are covalent bonds between the hydrogen atoms
Explanation:
Answer: the correct option is 2, 3, 4, 1.
Explanation:alphabetic indexing order is the order in which files or names are being arranged according to the alphabet. In the following names:
2) KST Enterprises
3)Leland and Son Graphics
4)Lucinda Topper
1) Topper & Casey Plumbing.
While arranging alphabetically, the first letters are usually considered but in a scenario where alphabet occurs twice( 3 And 4) the second letter is considered. I hope this helps, thanks
Answer:
Atomic mass = mass of protons + mass of neutrons
Explanation:
In an element atomic mass of an atom can be calculated by adding the mass of protons and neutrons
I hope this helps! :)
Answer:
3,964 years.
Explanation:
- It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
- Half-life time is the time needed for the reactants to be in its half concentration.
- If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
- Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
- The half-life of the element is 5,730 years.
- For, first order reactions:
<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>
Where, k is the rate constant of the reaction.
t1/2 is the half-life of the reaction.
∴ k =0.693/(t1/2) = 0.693/(5,730 years) = 1.21 x 10⁻⁴ year⁻¹.
- Also, we have the integral law of first order reaction:
<em>kt = ln([A₀]/[A]),</em>
where, k is the rate constant of the reaction (k = 1.21 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = ??? year).
[A₀] is the initial concentration of the sample ([A₀] = 100%).
[A] is the remaining concentration of the sample ([A] = 61.9%).
∴ t = (1/k) ln([A₀]/[A]) = (1/1.21 x 10⁻⁴ year⁻¹) ln(100%/61.9%) = 3,964 years.
Answer:
20cm^2
Explanation:
Here, Density= Mass/ Volume
=100/5
= 20 cm^2