Explanation:
what is the question? could you pls provide it
Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s
Answer:
The load has a mass of 2636.8 kg
Explanation:
Step 1 : Data given
Mass of the truck = 7100 kg
Angle = 15°
velocity = 15m/s
Acceleration = 1.5 m/s²
Mass of truck = m1 kg
Mass of load = m2 kg
Thrust from engine = T
Step 2:
⇒ Before the load falls off, thrust (T) balances the component of total weight downhill:
T = (m1+m2)*g*sinθ
⇒ After the load falls off, thrust (T) remains the same but downhill component of weight becomes m1*gsinθ .
Resultant force on truck is F = T – m1*gsinθ
F causes the acceleration of the truck: F= m*a
This gives the equation:
T – m1*gsinθ = m1*a
T = m1(a + gsinθ)
Combining both equations gives:
(m1+m2)*g*sinθ = m1*(a + gsinθ)
m1*g*sinθ + m2*g*sinθ =m1*a + m1*g*sinθ
m2*g*sinθ = m1*a
Since m1+m2 = 7100kg, m1= 7100 – m2. This we can plug into the previous equation:
m2*g*sinθ = (7100 – m2)*a
m2*g*sinθ = 7100a – m2a
m2*gsinθ + m2*a = 7100a
m2* (gsinθ + a) = 7100a
m2 = 7100a/(gsinθ + a)
m2 = (7100 * 1.5) / (9.8sin(15°) + 1.5)
m2 = 2636.8 kg
The load has a mass of 2636.8 kg