<span>5.98 x 10^-2 ohms.
Resistance is defined as:
R = rl/A
where
R = resistance in ohms
r = resistivity (given as 1.59x10^-8)
l = length of wire.
A = Cross sectional area of wire.
So plugging into the formula, the known values, including the area of a circle being pi*r^2, gives:
R = 1.59x10^-8 * 3.00 / (pi * (5.04 x 10^-4)^2)
R = (4.77 x 10^-8) / (pi * 2.54016 x 10 ^-7)
R = (4.77 x 10^-8) / (7.98015 x 10^-7)
R = 5.98 x 10^-2 ohms
So that wire has a resistance of 5.98 x 10^-2 ohms.</span>
Answer:
a) Total mass form, density and axis of rotation location are True
b) I = m r²
Explanation:
a) The moment of inertia is the inertia of the rotational movement is defined as
I = ∫ r² dm
Where r is the distance from the pivot point and m the difference in body mass
In general, mass is expressed through density
ρ = m / V
dm = ρ dV
From these two equations we can see that the moment of inertia depends on mass, density and distance
Let's examine the statements, the moment of inertia depends on
- Linear speed False
- Acceleration angular False
- Total mass form True
- density True
- axis of rotation location True
b) we calculate the moment of inertia of a particle
For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is
I = m r²
Answer:
I think it is the first one: <u>The arrow appears reversed because light is bent as it enters the water, and again as it exits. The two light paths cross, making the direction of the arrow appear crossed.</u>
Explanation:
Answer: v = 4.4 m/s
Explanation:
In the absence of friction, the total mechanical energy will be constant
KE₀ + PE₀ = KE₁ + PE₁
0 + mg(6) = ½mv₁² + mg(5)
½mv₁² = mg(6 - 5)
v = √(2g(1)) = 4.4 m/s
Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
![(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]](https://tex.z-dn.net/?f=%281000%2A10%29%2B%282000%2A0%29%3D%281000%2B2000%29%2Av_%7B3%7D%5C%5Cv_%7B3%7D%3D3.33%5Bm%2Fs%5D)