Answer:
28.75211 kj
Explanation:
Given data:
Mass of iron bar = 841 g
Initial temperature = 84°C
Final temperature = 7°C
Heat released = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
specific heat capacity of iron is 0.444 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 7°C - 84°C
ΔT = -77°C
By putting values,
Q = 841 g × 0.444 j/g.°C × -77°C
Q = 28752.11 j
In Kj:
28752.11 j × 1 kJ / 1000 J
28.75211 kj
We need to measure 20.0 grams of CaCl₂ to prepare 500 mL of 0.360 M solution.
First, we need to determine the required moles of CaCl₂. We have 500 mL (0.500 L) of a 0.360 M solution (0.360 moles of CaCl₂ per liter of solution).

Then, we will convert 0.180 moles to grams using the molar mass of CaCl₂ (110.98 g/mol).

To prepare the solution, we weigh 20.0 g of CaCl₂ and add it to a beaker with enough distilled water to dissolve it. We stir it, heat it if necessary, and when we have a solution, we transfer it to a 500 mL flask and complete it to the mark with distilled water.
We need to measure 20.0 grams of CaCl₂ to prepare 500 mL of 0.360 M solution.
You can learn more about solutions here: brainly.com/question/2412491
R in the equation is a gas constant. It is .0821 liters x ATM over Moles x degrees kelvin.
1) Answer is: molar mas of ammonia is 17.031 g/mol.
M(NH₃) = Ar(N) + 3 · Ar(H) · g/mol.
M(NH₃) = 14.007 + 3 · 1.008 · g/mol.
M(NH₃) = 17.031 g/mol.
2) Answer is: molar mas of lead(II) chloride is 278.106 g/mol.
M(PbCl₂) = Ar(Pb) + 2 · Ar(Cl) · g/mol.
M(PbCl₂) = 207.2 + 2 · 35.453 · g/mol.
M(PbCl₂) = 278.106 g/mol.
3) Answer is: molar mas of acetic acid is 60.052 g/mol.
M(CH₃COOH) = 2 · Ar(C) + 2 · Ar(O) + 4 · Ar(H) · g/mol.
M(CH₃COOH) = 2 · 12.0107 + 2 · 15.9994 + 4 · 1.008 · g/mol.
M(CH₃COOH) = 60.052 g/mol.
It is difficult to measure the enthalpy change of hydration accurately in a direct way because the hydration process can't be controlled directly. Instead, anhydrous and hydrated copper(II) sulfate can be dissolved in water. Each 'route' produces a solution of hydrated copper(II) sulfate.