<span>4.6 moles Hg should be the answer. Hope this helps!</span>
<span>It's easy to get confused about whether milk is an acid or a base, especially when you consider that some people drink milk or take calcium to treat an acidic stomach. Actually, milk has a pH of around 6.5 to 6.7, which makes it slightly acidic. Some sources cite milk as being neutral since it is so close to the neutral pH of 7.0. Milk contains lactic acid, which is a hydrogen donor or proton donor.</span>
<u>Answer:</u> The activation energy of the reaction is 124.6 kJ/mol
<u>Explanation:</u>
To calculate activation energy of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{79^oC}}{K_{26^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B79%5EoC%7D%7D%7BK_%7B26%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 79°C = 
= equilibrium constant at 26°C = 
= Activation energy of the reaction = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = ![26^oC=[26+273]K=299K](https://tex.z-dn.net/?f=26%5EoC%3D%5B26%2B273%5DK%3D299K)
= final temperature = ![79^oC=[79+273]K=352K](https://tex.z-dn.net/?f=79%5EoC%3D%5B79%2B273%5DK%3D352K)
Putting values in above equation, we get:
![\ln(\frac{0.394}{2.08\times 10^{-4}})=\frac{E_a}{8.314J/mol.K}[\frac{1}{299}-\frac{1}{352}]\\\\E_a=124595J/mol=124.6kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B0.394%7D%7B2.08%5Ctimes%2010%5E%7B-4%7D%7D%29%3D%5Cfrac%7BE_a%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B299%7D-%5Cfrac%7B1%7D%7B352%7D%5D%5C%5C%5C%5CE_a%3D124595J%2Fmol%3D124.6kJ%2Fmol)
Hence, the activation energy of the reaction is 124.6 kJ/mol
Beyond the planet Neptune is found a region filled with icy bodies. This region is known as the Kuiper Belt. This holds trillions of objects which is said to be remnants of the early solar system. The region contains comets and dwarf planets.