1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BabaBlast [244]
3 years ago
11

Write 2 times 5 + (5+8)+ (8 times 2) as the product of two factors

Mathematics
1 answer:
marysya [2.9K]3 years ago
3 0

Answer: 3 and 13 the solution to the equation is 39

Step-by-step explanation:

You might be interested in
3/10x - 1 = 3/4
Allisa [31]
First you make -1 and 3/4 have a common denominator. 1 has a fraction of 1/1 so times four it is 4/4. Then you add on both sides in order  to isolate x and you get 3/10x = 7/4.

Then you isolate x by multyiplying the reciprocal of 3/10 on both sides, 10/3.
3/10 and 10/3 cancel out and you get an answer of x = 70/4.

You could then simplify it to get 35/6 by finding a greasted common multiple of 12 and 70 which is 2 and dividing both by 2 to get a simpilier answer.

So the answer is x = 35/6
4 0
3 years ago
Read 2 more answers
MATH PERCENTAGE QUESTION HELP!
lubasha [3.4K]

Answer:

68.5% seats filled

76% points earned

Step-by-step explanation:

<h3><u>General outline</u></h3>
  1. Identify the whole and the part
  2. Change ratio into a percentage

<h3><u>Ratios</u></h3>

Percentages are formed when one finds a ratio of two related quantities, usually comparing the first partial quantity to the amount that "should" be there.

\text{ratio}=\dfrac {\text{the "part"}}{\text{the whole}}

For instance, if you have a pie, and you eat half of the pie, you're in effect imagining the original pie (the whole pie) cut into two equal pieces, and you ate one of them (the "part" of a pie that you ate).  To find the ratio of pie that you ate compared to the whole pie, we compare the part and the whole:

\text{ratio}=\dfrac {\text{the number of "parts" eaten}}{\text{the number of parts of the whole pie}}

\text{ratio}=\dfrac {1}{2}

If you had instead eaten three-quarters of the pie, you're in effect imagining the original pie cut into 4 equal pieces, and you ate 3 of them.

\text{ratio}=\dfrac {\text{the number of "parts" eaten}}{\text{the number of parts of the whole pie}}

\text{ratio}=\dfrac {3}{4}

There can be cases where the "part" is bigger than the whole.  Suppose that you are baking pies and we want to find the ratio of the pies baked to the number that were needed, the number of pies you baked is the "part", and the number of pies needed is the whole.  This could be thought of as the ratio of project completion.

If we need to bake 100 pies, and so far you have only baked 75, then our ratio is:

\text{ratio}=\dfrac {\text{the number of "parts" made}}{\text{the number of parts of the whole order}}

\text{ratio}=\dfrac {75}{100}

But, suppose you keep baking pies and later you have accidentally made more than the 100 total pies.... you've actually made 125 pies.  Even though it's the bigger number, the number of pies you baked is still the "part" (even though it's bigger), and the number of pies needed is the whole.

\text{ratio}=\dfrac {\text{the number of "parts" made}}{\text{the number of parts of the whole order}}

\text{ratio}=\dfrac {125}{100}

<h3><u>Percentages</u></h3>

To find a percentage from a ratio, there are two small steps:

  1. Divide the two numbers
  2. Multiply that result by 100 to convert to a percentage

<u>Going back to the pies:</u>

When you ate half of the pie, your ratio of pie eaten was \frac{1}{2}

Dividing the two numbers, the result is 0.5

Multiplying by 100 gives 50.  So, the percentage of pie that you ate (if you ate half of the pie) is 50%

When you ate three-quarters of the pie, the ratio was \frac{3}{4}

Dividing the two numbers, the result is 0.75

Multiplying by 100 gives 75.  So, the percentage of pie that you ate (if you ate three-quarters of the pie) is 75%.

When you were making pies, and 100 pies were needed, but so far you'd only baked 75 pies, the ratio was \frac{75}{100}

Dividing the two numbers, the result is 0.75

Multiplying by 100 gives 75.  So, the percentage of the project that you've completed at that point is 75%.

Later, when you had made 125 pies, but only 100 pies were needed, the ratio was \frac{125}{100}

Dividing the two numbers, the result is 1.25

Multiplying by 100 gives 125%.  So, the percentage of pies you've made to complete the project at that point is 125%.... the number of pies that you've made is more than what you needed, so the baking project is more than 100% complete.

<h3><u>The questions</u></h3>

<u>1.   27400 spectators n a 40000 seat stadium percentage.</u>

Here, it seems that the question is asking what percentage of the stadium is full, so the whole is the 40000 seats available, and the "part" is the 27400 spectators that have come to fill those seats.

\text{ratio}=\dfrac {\text{the number of spectators filling seats}}{\text{the total number of seats in the stadium}}

\text{ratio}=\dfrac {27400}{40000}

Dividing gives 0.685.  Multiplying by 100 gives 68.5.  So, 68.5% of the seats have been filled.

<u>2.   an archer scores 95 points out of a possible 125 points percentage</u>

Here, it seems that the question is asking what percentage of the points possible were earned, so the whole is the 125 points possible, and the "part" is the 95 points that were earned.

\text{ratio}=\dfrac {\text{the number of points earned}}{\text{the total number of points possible}}

\text{ratio}=\dfrac {95}{125}

Dividing gives 0.76.  Multiplying by 100 gives 76.  So, 76% of points possible were earned.

8 0
2 years ago
Find the distance between the points (-1,-9) and (1,-4)
Snezhnost [94]

The distance between the two points is 5.4

Explanation:

The points are (-1,-9) and (1,-4)

The distance between the two points can be determined using the formula

d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}

Substituting the values in the formula, we get,

d=\sqrt{(1+1)^{2}+(-4+9)^{2}}

Adding the values,

d=\sqrt{2^{2}+5^{2}}

Squaring the terms, we get,

d=\sqrt{4+25}

Simplifying, we have,

d=\sqrt{29}=5.4

Thus, the distance between the two points is 5.4

7 0
3 years ago
Need help with this page of my final . Have no idea how to do geometry . Anyone good at it ? I'd appreciate it !
Katen [24]
Answers: 
21. Three noncollinear points determine 3 lines and 1 plane
22. If two quadrilaterals are similar, then they are squares
23. PR = 2.6
24. Midpoint is (3,-1)
25. Angle BXD = 108 degrees
26. The complement is 18 degrees
27. A) 30
28. Corresponding angles
29. False; Change "congruent" to "supplementary"
30. Neither
31. Equation is y = (-2/5)x + 9/5
32. Obtuse scalene triangle
----------------------------------------------------------------
Work Shown
Problem 21) 
Three noncollinear points determine 3*2 = 6 pairings but half of those pairings are repeats, so we have 6/2 = 3 unique groups forming 3 lines (think of a triangle and its sides)
The three noncollinear points form a single plane. This is simply an axiom. 
-----------------
Problem 22) 
Original Conditional is in the form If P, then Q
The converse is the flip of that. So we go to If Q, then P.
So we have
Original Conditional: "If two quadrilaterals are squares, then they are similar"
Converse: "If two quadrilaterals are similar, then they are squares"
-----------------
Problem 23) 
P is between Q and R. By the segment addition postulate, we know
QP+PR = QR
We're given PQ or QP to be 10.2 and we know that QR = 12.8, so this means,
QP+PR = QR
10.2+PR = 12.8
10.2+PR-10.2 = 12.8-10.2
PR = 2.6
-----------------
Problem 24) 
Add up the x coordinates and divide by 2: (x1+x2)/2 = (8+(-2))/2 = 6/2 = 3
Add up the y coordinates and divide by 2: (y1+y2)/2 = (-6+4)/2 = -2/2 = -1
Therefore the midpoint is (3,-1)
-----------------
Problem 25) 
Angle DXE = 36 (given)
Angle CXD = angle DXE (definition of bisection)
Angle CXD = 36
Angle CXE = (angle CXD)+(angle DXE)
Angle CXE = 36+36
Angle CXE = 72
Angle BXE = 2*(angle CXE) ... since XC bisects angle BXE
Angle BXE = 2*72
Angle BXE = 144
Angle BXD = (angle BXE) - (angle DXE)
Angle BXD = 144 - 36
Angle BXD = 108
-----------------
Problem 26) 
From problem 25, we found that Angle CXE = 72. Since XC cuts angle BXE in half, and the other angle is BXC, this means 
Angle BXE = angle CXE = 72 degrees
Now subtract that from 90
90 - (angle BXE) = 90 - 72 = 18
The complement is 18 degrees
-----------------
Problem 27) 
A+B+C = 180
x+x+120 = 180
2x+120 = 180
2x+120-120 = 180-120
2x = 60
2x/2 = 60/2
x = 30
-----------------
Problem 28) 
Angle 5 and angle 7 are corresponding angles. They are located on the same side of the transversal line. They both correspond to the same side of their respective parallel line counterparts. Both are on the right side of the parallel line they are attached to.
-----------------
Problem 29) 
The statement in its current form is False. One way to fix it is to change the first underlined term from "congruent" to "supplementary". Angle 3 and angle 2 are same side interior angles which add up to 180 degrees. 
-----------------
Problem 30) 
Slope of AB = (y2-y1)/(x2-x1)
Slope of AB = (-2-6)/(-2-10)
Slope of AB = -8/(-12)
Slope of AB = 2/3
Slope of CD = (y2-y1)/(x2-x1)
Slope of CD = (2-6)/(6-(-6))
Slope of CD = -4/12
Slope of CD = -1/3
Multiply the slopes:
(Slope of AB)*(Slope of BC) = (2/3)*(-1/3) = -2/9
The result is NOT equal to -1, so the lines are NOT perpendicular
The two slopes are NOT equal, so the lines are NOT parallel
So the answer is "neither"
-----------------
Problem 31) 
Anything parallel to 2x+5y = 12 is of the form 2x+5y = C where C is some fixed number
Plug in the given point (x,y) = (2,1) to find C
2x+5y = C
2*2+5*1 = C
4+5 = C
9 = C
C = 9
So we go from 2x+5y = C to 2x+5y = 9. Now solve for y
2x+5y = 9
2x+5y-2x = 9-2x
5y = -2x+9
5y/5 = (-2x+9)/5
y = (-2/5)x + 9/5
-----------------
Problem 32) 
A+B+C = 180
16+B+64 = 180
B+80 = 180
B+80-80 = 180-80
B = 100
The angle B is 100 degrees, which is larger than 90 degrees. We have an obtuse triangle because of this fact.
All three angles (16, 64, 80) are different, so the side lengths are different. The three different side lengths means we have a scalene triangle.
7 0
3 years ago
Blake knows that one of the solutions to x2 – 6x + 8 = 0 is x = 2. What is the other solution?
salantis [7]

Answer:

N/a

Step-by-step explanation:

2*2-6*2+8=0

4-12+8=0

-8+8=0

0=0

5 0
3 years ago
Read 2 more answers
Other questions:
  • 8-2x=5<br> Please help in the next ten minutes
    7·2 answers
  • Q #14 please help to solve
    15·1 answer
  • If the front of a playhouse is shown in a scale drawing and the height of the door is 1.8 inches. The scale that maps the drawin
    14·1 answer
  • Which of the following can also be written as a recursive sequence?
    9·2 answers
  • Multiple Choice<br>1. Which angle is a right angle? (1 point)​
    14·1 answer
  • A closed cylindrical tank had a diameter and height 7m what is the capacity of the tank
    14·1 answer
  • I am a multiple of 10. My factors include an even number and an odd number. I am greater than 3 x 5 and less than 4 x 7. What nu
    10·2 answers
  • Factor completely.<br><br> 3x^2 −147=
    7·1 answer
  • How to solve (-6y^-3z^-3)(-1/2y^-1z)
    12·1 answer
  • You have 90 degree triangle and the adjacent is 24, the opposite is 32, and the hypotenuse is 40. What is the value of tan W rou
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!