Answer:
Question 13: is Side-Side-Angel
Question 14: laws sines.
Question 15: is 1 (which b.)
there my brother tried his best, have a great day TwT
This is the correct answer
Answer:
8
Step-by-step explanation:
18 = -22 +5y
add 22 to both sides
40 = 5y
y = 8
Answer:
Step-by-step explanation:
The first parabola has vertex (-1, 0) and y-intercept (0, 1).
We plug these values into the given vertex form equation of a parabola:
y - k = a(x - h)^2 becomes
y - 0 = a(x + 1)^2
Next, we subst. the coordinates of the y-intercept (0, 1) into the above, obtaining:
1 = a(0 + 1)^2, and from this we know that a = 1. Thus, the equation of the first parabola is
y = (x + 1)^2
Second parabola: We follow essentially the same approach. Identify the vertex and the two horizontal intercepts. They are:
vertex: (1, 4)
x-intercepts: (-1, 0) and (3, 0)
Subbing these values into y - k = a(x - h)^2, we obtain:
0 - 4 = a(3 - 1)^2, or
-4 = a(2)². This yields a = -1.
Then the desired equation of the parabola is
y - 4 = -(x - 1)^2
Answer:
Height of the streetlight ≈ 8 ft(nearest foot)
Step-by-step explanation:
The doc file displays the triangle formed from the illustration. x is the height of the street light. The distance from the gentle man to the street light is 10 ft. He has a height of 5.6 ft and the shadow formed on the ground is 24 ft long. The height of the street light can be calculated below.
The length of the tip of the shadow to the base of the street light is 34 ft. Similar triangle have equal ratio of their corresponding sides .
ab = 5.6 ft
The ratio of the base sides = 24/34
The ratio of the heights = 5.6/x
The two ratio are equal Therefore,
24/34 = 5.6/x
24x = 5.6 × 34
24x = 190.4
divide both side by 24
x = 190.4/24
x = 7.93333333333
x ≈ 8 ft
Height of the streetlight ≈ 8 ft(nearest foot)