Answer:
1.97 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²

Solving the above equation we get

So, the time the package was in the air is 1.97 seconds
I think the correct answer would be that because electromagnets are powerful and can be turned off and on anytime. Electromagnet is a magnet in which the magnetic field is made by the electric current that is induced to the system.
Answer:
k = 17043.5 N/m = 17.04 KN/m
Explanation:
First we need to find the force applied by safe pn the spring:
F = Weight of Safe
F = mg
where,
F = Force Applied by the safe on the spring = ?
m = mass of safe = 800 kg
g = 9.8 m/s²
Therefore,
F = (800 kg)(9.8 m/s²)
F = 7840 N
Now, using Hooke's Law:
F = kΔx
where,
K = Spring Constant = ?
Δx = compression = 46 cm = 0.46 m
Therefore,
7840 N = k (0.46 m)
k = 7840 N/0.46 m
<u>k = 17043.5 N/m = 17.04 KN/m</u>
Answer:

Explanation:
The temperature in stratosphere is generally about 270 K
molecular weight of an ozone molecule = 48 gm/mole
now formula for most probable velocity

plugging the values we get


Answer:
Short circuit
Explanation:
The given figure shows a short circuit. It is defined as the circuit which allows the flow of electric current when there is no resistance. It shows a battery, bulb and connecting wires.
The wire across the bulb is connected from one terminal to another without any resistance in between them.
So, the correct option is (d) " short circuit ".