Answer:
x=2.4t+4.9t^2
Explanation:
This equation is one of the kinematic equations to solve for distance. The original equation is as follows:
X=Xo+Vt+1/2at^2
We know that the ball starts at rest meaning that its initial velocity and position is zero.
X=0+Vt+1/2at^2
Since it is going down the ramp, you can use the acceleration of gravity constant. (9.81 m/s^2) and simplify that with the 1/2.
X=Vt+4.9t^2
Note: Since the positive direction in this problem is down, you are adding the 4.9t^2, but if a question says that the downward direction is negative, you would subtract those values.
Now, substitute in your velocity value.
X=2.4t+4.9t^2
Answer:
Explanation:
Threshold frequency = 4.17 x 10¹⁴ Hz .
minimum energy required = hν where h is plank's constant and ν is frequency .
E = 6.6 x 10⁻³⁴ x 4.17 x 10¹⁴
= 27.52 x 10⁻²⁰ J .
wavelength of radiation falling = 245 x 10⁻⁹ m
Energy of this radiation = hc / λ
c is velocity of light and λ is wavelength of radiation .
= 6.6 x 10⁻³⁴ x 3 x 10⁸ / 245 x 10⁻⁹
= .08081 x 10⁻¹⁷ J
= 80.81 x 10⁻²⁰ J
kinetic energy of electrons ejected = energy of falling radiation - threshold energy
= 80.81 x 10⁻²⁰ - 27.52 x 10⁻²⁰
= 53.29 x 10⁻²⁰ J .
Highest to lowest number:
-less than 1 solar mass
-between 1 and 10 solar masses
-between 10 and 30 solar masses
-between 30 and 60 solar masses
<h3>What is Stellar masses ?</h3>
Stellar mass is a phrase that is used by astronomers to describe the mass of a star.
- It is usually enumerated in terms of the Sun's mass as a proportion of a solar mass ( M ☉). Hence, the bright star Sirius has around 2.02 M ☉.
- Stellar masses are not fixed, although they change for single stars only on long periods.
Learn more about Stellar masses here:
brainly.com/question/1128503
#SPJ4
Answer:
66.2 sec
Explanation:
C₁ = 1.0 F
C₂ = 1.0 F
ΔV = Potential difference across the capacitor = 6.0 V
C = parallel combination of capacitors
Parallel combination of capacitors is given as
C = C₁ + C₂
C = 1.0 + 1.0
C = 2.0 F
R = resistance = 33 Ω
Time constant is given as
T = RC
T = 33 x 2
T = 66 sec
V₀ = initial potential difference across the combination = 6.0 Volts
V = final potential difference = 2.2 volts
Using the equation
t = 66.2 sec