1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad1618 [11]
2 years ago
14

NASA has asked your team of rocket scientists about the feasibility of a new satellite launcher that will save rocket fuel. NASA

's idea is basicallyan electric slingshot that consists of 4 electrodes arranged in a horizontal square with sides of length d at a height h above the ground. The satellite is then placed on the ground aligned with the center of the square. A power supply will provide each of the four electrodes with a charge of Q/4 and the satellite with a charge -Q. When the satellite is released from rest, it moves up and passes through the center of the square. At the instant it reaches the square's center, the power supply is turned offand the electrodes are grounded, giving them a zero electric charge. To test this idea, you decide to use energy considerations to calculate how big Q will have to be to get a 100 kg satellite to a sufficient orbit height. Assume that the satellite startsfrom 15 meters below the square of electrodes and that the sides of the square are each 5 meters. In your physics text you find the mass of the Earth to be 6.0 x 1024kg.
Physics
1 answer:
kkurt [141]2 years ago
6 0

Answer:

The answer is "q=0.0945\,C".

Explanation:

Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

U_i=\frac{1}{4\pi\epsilon_0} \times \frac{4\times4q^2}{\sqrt{(15)^2+(5/\sqrt2)^2}}

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

U_f=\frac{1}{4\pi\epsilon_0}\ \times \frac{4\times4q^2}{( \frac{5}{\sqrt{2}})}

Potential energy shifts:

= U_f -U_i \\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{\sqrt{(15)^2+( \frac{5}{\sqrt{2})^2)}}\right ) \\\\   =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ 15 +( \frac{5}{2})}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{30+5}{2})}}\right )\\\\

=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{35}{2})}}\right )\\\\=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{17.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 24.74- 5 }{87.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 19.74- 5 }{87.5}}\right )\\\\ =\frac{4q^2}{\pi\epsilon_0}\left ( 0.2256 }\right )\\\\= \frac{0.28 \times q^2}{ \epsilon_0}\\\\=q^2\times31.35 \times10^9\,J

Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.

=\frac{GMm}{R}-\frac{GMm}{R+h} \\\\=(6.67\times10^{-11}\times6.0\times10^{24}\times100)\left(\frac{1}{6400\times1000}-\frac{1}{6700\times1000} \right ) \\\\ =(6.67\times10^{-11}\times6.0\times10^{26})\left(\frac{1}{64\times10^{5}}-\frac{1}{67\times10^{5}} \right ) \\\\=(6.67\times6.0\times10^{15})\left(\frac{67 \times 10^{5} - 64 \times 10^{5}  }{ 4,228 \times10^{5}} \right ) \\\\

=( 40.02\times10^{15})\left(\frac{3 \times 10^{5}}{ 4,228 \times10^{5}} \right ) \\\\ =40.02 \times10^{15} \times 0.0007 \\\\

\\\\ =0.02799\times10^{10}\,J \\\\= q^2\times31.35\times10^{9} \\\\ =0.02799\times10^{10} \\\\q=0.0945\,C

This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.

You might be interested in
What is a mechanical wave?
Anika [276]
A wave that is oscillation of matter.. such as a water ripples
7 0
2 years ago
Read 2 more answers
What happens to myosin and actin as sarcomeres relax?
Leokris [45]
The myosin heads pull on the actin, bringing them closer together

4 0
3 years ago
An ore sample weighs 17.50 N in air. When the sample
zysi [14]

Answer with Explanation:

We are given that

Weight of an ore sample=17.5 N

Tension in the cord=11.2 N

We have to find the total volume and the density of the sample.

We know that

Tension, T=W-F_b

F_b=buoyancy force

T=Tension force

W=Weight

By using the formula

11.2=17.5-F_b

F_b=17.5-11.2=6.3 N

F_b=V_{object}\times \rho_{water}\cdot g

Where

V_{object}=Volume of object

\rho_{water}=1000 kgm^{-3}=Density of water

g=9.8 ms^{-2}=Acceleration due to gravity

Substitute the values then we get

6.3=9.8\times 1000\times V_{object}

V_{object}=\frac{6.3}{9.8\times 1000}=6.43\times 10^{-4} m^3

Volume of sample=6.43\times 10^{-4} m^3

Density of sample,\rho_{object}=\frac{Mass}{volume_{object}}

Where mass of ore sample=1.79 kg

Substitute the values then, we get

\rho_{object}=\frac{1.79}{6.43\times 10^{-4}}=2.78\times 10^3 kg/m^3

Density of the sample=2.78\times 10^{3} kgm^{-3}

7 0
3 years ago
Velocity is a vector quantity because...
statuscvo [17]
It has both magnitude and direction
5 0
2 years ago
What increases the transfer of the wind's energy to the water?
kari74 [83]

Answer:

A, flat water

Explanation:

6 0
2 years ago
Other questions:
  • An outside thermometer reads 57°F. What is this temperature in °C? Round your answer to the nearest whole number.
    9·2 answers
  • A hollow spherical iron shell floats almost completely submerged in water. The outer diameter is 58.2 cm, and the density of iro
    9·1 answer
  • What is the definition of work in Physics?
    8·1 answer
  • On a very hot summer day, the rooms on the first floor of a house stay cooler than the rooms on the second. Which form of therma
    7·1 answer
  • What is force magnifier​
    11·1 answer
  • A car moving eastward along a straight road increases its speed uniformly from 16 m/s to 32 m/s in 10.0 s.
    13·1 answer
  • En las olimpiadas del 2012 del colegio villapalos maria gano la carrera de los 100 m en 10,56 s y la de 200 m en 22,34 s ¿en cua
    5·1 answer
  • What is the advantage of SI unit over CGS unit?​
    12·1 answer
  • A child jumps on a trampoline, which of the following causes the child to rise in the air?
    15·1 answer
  • I measured my pet dog (Mickey) to be able to run the length of my backyard 500 in 12 seconds. At this rate, how many miles can m
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!