The work done to pull the object 7.0 m is the total area under the graph from 0.0 m to 7.0 m, determined as 245 J.
<h3>Work done by the applied force</h3>
The area under force versus displacement graph is work done.
The total work done by pulling the object 7 m, can be grouped into two areas;
- First area, A1 = area of triangle from 0 m to 2.0 m
- Second area, A2 = area of trapezium, from 2.0 m to 7.0 m
A1 = ¹/₂ bh
A1 = ¹/₂ x (2) x (20)
A1 = 20 J
A2 = ¹/₂(large base + small base) x height
A2 = ¹/₂[(7 - 2) + (7-3)] x 50
A2 = ¹/₂(5 + 4) x 50
A2 = 225 J
<h3>Total work done </h3>
W = A1 + A2
W = 20 J + 225 J
W = 245 J
Learn more about work done here: brainly.com/question/8119756
The total force that the SUV exerts is:
F = 2000 kg * 3 m/s^2
F = 6000 N
Since a resisting force amounting to 1500 N is exerted,
then the force exerted by the SUV tires is:
F tire = 6000 N – 1500 N
F tire = 4500 N
Answer:
Explanation:
Given that,
Weight of jet
W = 2.25 × 10^6 N
It is at rest on the run way.
Two rear wheels are 16m behind the front wheel
Center of gravity of plane 10.6m behind the front wheel
A. Normal force entered on the ground by front wheel.
Taking moment about the the about the real wheel.
Check attachment for better understanding
So,
Clock wise moment = anti-clockwise moment
W × 5.4 = N × 16
2.25 × 10^6 × 5.4 = 16•N
N = 2.25 × 10^6 × 5.4 / 16
N = 7.594 × 10^5 N
B. Normal force on each of the rear two wheels.
Using the second principle of equilibrium body.
Let the rear wheel normal be Nr and note, the are two real wheels, then, there will be two normal forces
ΣFy = 0
Nr + Nr + N — W = 0
2•Nr = W—N
2•Nr = 2.25 × 10^6 — 7.594 × 10^5
2•Nr = 1.491 × 10^6
Nr = 1.491 × 10^6 / 2
Nr = 7.453 × 10^5 N
Answer:

Explanation:
Uncertainty principle say that the position and momentum can not be measured simultaneously except one relation which is described below,

Given that the uncertainty in x is 0.1 mm.
Therefore,

Therefore, uncertainty in the transverse momentum of photon is 
The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass
kg, charge +e =
C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed
m/s. The proton comes momentarily to rest at a distance
m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are
m apart?
Explanation:
The given data is as follows.
Mass of proton =
kg
Charge of proton = 
Speed of proton = 
Distance traveled = 
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=

where, 
U = 
Putting the given values into the above formula as follows.
U = 
= 
= 
Therefore, we can conclude that the electric potential energy of the proton and nucleus is
.