You drop it barely above the ground
Answer:
contain two sets of each of the 23 chromosome types
Answer:
The order must be K2→K1, since the permanently active K1 allele (K1a) is able to propagate the signal onward even when its upstream activator K2 is inactive (K2i). The reverse order would have resulted in a failure to signal (K1a→K2i), since the permanently active K1a kinase would be attempting to activate a dead K2i kinase.
Explanation:
- You characterize a double mutant cell that contains K2 with type I mutation and K1 with type II
mutation.
- You observe that the response is seen even when no extracellular signal is provided.
- In the normal pathway, i f K1 activat es K2, we expect t his combinat ion of two m utants to show no response with or without ext racell ular signal. This is because no matt er how active K1 i s, it would be unable to act ivate a mutant K2 that i s an activit y defi cient. If we reverse the order, K2 activating K1, the above observati on is valid. Therefore, in the normal signaling pathway, K2 activates K1.
Answer: the cfu/g Gram-negative bacteria in the fecal sample is C = 3.0 × 10^3
Explanation:
We know that; Gram negative bacteria looks pale reddish in color under a light microscope from Gram staining.
therefore
There are 30 red bacterial colonies counted.
1 mL of from tube 1 was removed and added to tube with 99 mL saline (tube 2) dilution is 1/100.
transferred volume into the plate is 1 mL.
Now, we have to determine the cfu/g Gram-negative bacteria in the fecal sample
Formula to calculate CFU/g bacteria in fecal sample is expressed as;
C = n/(s×d )
where C is concentration (CFU/g)
, n is number of colonies
, s is volume transferred to plate
, d is dilution factor.
so we substitute
C = 30 / ((1/100) × 1)
C = 30 / 0.01
C = 3000
C = 3.0 × 10^3
THERFERE, the cfu/g Gram-negative bacteria in the fecal sample is C = 3.0 × 10^3
Answer:
1 they speed up to change the rate
Explanation:
please mark me as brainliest answer