<span><span>KaAcid</span><span><span>1.0 * 109</span>Hydrobromic acidHBr</span><span><span>1.3 * 106</span>Hydrochloric acidHCl</span><span><span>1.0 * 103</span>Sulfuric acid<span>H2SO4</span></span><span><span>2.4 * 101</span>Nitric acid<span>HNO<span>3</span></span></span></span>
7<span> to 49 10 to 100. 30 Secs. 3. What is the </span>pH<span> value of pure </span>water<span>? 0 3 </span>7<span> 10 ... How do acids </span>taste<span>? </span>bitter sour<span> sweet salty. 30 Secs. </span>7<span>. How do </span>bases taste<span>? </span>bitter<span> ... 8. Which kind of solution would react with a metal? acidic basic </span>neutral water<span> ... cocoa </span>has<span> a </span>bitter taste<span>. It is most likely which of the following? acid </span><span>base neutral</span>
It has the most mass. but the electron cloud takes up the most space.
Iron bending is just a physical change because the iron has only changed shape but there is no new substance. Iron rusting is a chemical change because there is a new substance which is rust.
Answer:
Initial concentration of HI is 5 mol/L.
The concentration of HI after
is 0.00345 mol/L.
Explanation:

Rate Law: ![k[HI]^2 ](https://tex.z-dn.net/?f=k%5BHI%5D%5E2%0A)
Rate constant of the reaction = k = 
Order of the reaction = 2
Initial rate of reaction = 
Initial concentration of HI =![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
![1.6\times 10^{-7} mol/L s=(6.4\times 10^{-9} L/mol s)[HI]^2](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E%7B-7%7D%20mol%2FL%20s%3D%286.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%29%5BHI%5D%5E2)
![[A_o]=5 mol/L](https://tex.z-dn.net/?f=%5BA_o%5D%3D5%20mol%2FL)
Final concentration of HI after t = [A]
t = 
Integrated rate law for second order kinetics is given by:
![\frac{1}{[A]}=kt+\frac{1}{[A_o]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3Dkt%2B%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
![\frac{1}{[A]}=6.4\times 10^{-9} L/mol s\times 4.53\times 10^{10} s+\frac{1}{[5 mol/L]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3D6.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%5Ctimes%204.53%5Ctimes%2010%5E%7B10%7D%20s%2B%5Cfrac%7B1%7D%7B%5B5%20mol%2FL%5D%7D)
![[A]=0.00345 mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D0.00345%20mol%2FL)
The concentration of HI after
is 0.00345 mol/L.