I believe the correct answer from the choices listed above is the second option. The expression (6.0 x 104) (3.1 x 10-1) is equal to 1.9 x 10^4. We only have two significant figures from the starting expression that is why we rounded of the product from 1.86 to 1.9.
Answer:
3 × 10⁴ kJ
Explanation:
Step 1: Write the balanced thermochemical equation
C₃H₈(g) + 5 O₂(g) ⟶ 3 CO₂(g) + 4 H₂O(g) ΔH = -2220 kJ
Step 2: Calculate the moles corresponding to 865.9 g of H₂O
The molar mass of H₂O is 18.02 g/mol.
865.9 g × 1 mol/18.02 g = 48.05 mol
Step 3: Calculate the heat produced when 48.05 moles of H₂O are produced
According to the thermochemical equation, 2220 kJ of heat are evolved when 4 moles of H₂O are produced.
48.05 mol × 2220 kJ/4 mol = 2.667 × 10⁴ kJ ≈ 3 × 10⁴ kJ
Answer:
V = 12.93 L
Explanation:
Given data:
Number of moles = 0.785 mol
Pressure of balloon = 1.5 atm
Temperature = 301 K
Volume of balloon = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values.
V = nRT/P
V = 0.785 mol × 0.0821 atm.L/ mol.K × 301 K / 1.5 atm
V = 19.4 L /1.5
V = 12.93 L