Answer:
i can only help with 2 :( atimic mass is: 35.453 and number of electrons is:17
Explanation:
Silver and lead are special elements, where silver is insoluble in all halogen anions (like AgCl, AgI, AgBr)
and lead is insoluble in sulphates and halogen anions ( PbSO4, PbCl2, etc.)
Mercury is special because it is the only metal that is a liquid at room temperature
hope this helps!!
Solids maintain their shape, whereas fluids do not because <span>the molecules in solids maintain a regular pattern and only vibrate, or move very slowly. The correct option among all the options that are given in the question is the last option or option "d". I hope the answer has come to your help.</span>
Answer:
Explanation:
Stereoisomers are two or more atoms that have the same bonding order of atoms but there is a difference spatial arrangement of the atoms in space.
A plane of symmetry divides a molecule into two equal halves.
A chiral stereoisomer are not superimposed on a mirror image , Hence they do not posses a plane of symmetry.
As a result to that. these non-superimposable mirror images are said to be Enantiomers.
However, a Fischer Projection emanates from a two - dimensional figure which is used for presenting a three - dimensional organic molecules.
From the given question;
Fischer projection for an enantiomer of 2-bromo-2,3-dihydroxypropanal with the bromine oriented horizontally to the left and the hydroxide group oriented horizontally to the right.
we can sketch the way the enantiomer of 2-bromo-2,3-dihydroxypropanal can be seen like the one shown below:
CH₂OH
|
|
|
Br -------------|----------------OH
|
|
|
CHO
The objective of this question is to drawn the perspective formula of the molecule.
So , from the attached file below; we can see the perspective formula of the molecule in a well structured 3-D format.
Answer:
Specific heat of metal = 0.26 j/g.°C
Explanation:
Given data:
Mass of sample = 80.0 g
Initial temperature = 55.5 °C
Final temperature = 81.75 °C
Amount of heat absorbed = 540 j
Specific heat of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 81.75 °C - 55.5 °C
ΔT = 26.25 °C
540 j = 80 g × c × 26.25 °C
540 j = 2100 g.°C× c
540 j / 2100 g.°C = c
c = 0.26 j/g.°C