<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>
I believe this question has the following five choices to
choose from:
>an SN2 reaction has occurred with inversion of
configuration
>racemization followed by an S N 2 attack
>an SN1 reaction has taken over resulting in inversion
of configuration
>an SN1 reaction has occurred due to carbocation
formation
>an SN1 reaction followed by an S N 2 “backside”
attack
The correct answer is:
an SN1 reaction has occurred due to carbocation formation
Answer:

Explanation:
Given that,
Mass of the sample, m = 275 g
It required 10.75 kJ of heat to change its temperature from 21.2 °C to its melting temperature, 327.5 °C.
We need to find the specific heat of the metal. The heat required by a metal sample is given by :

c is specific heat of the metal

So, the specific heat of metal is
.
Answer:
four covalent bonds
Explanation:
A carbon atom would form 4 covalent bonds.
For a covalent bond to be formed, an atom would share its valence electrons with another. In this process, each atom would require unpaired electrons for this bond to be formed. The number of available unpaired electrons would represent the number of electrons needed to complete the outer energy level of the atom.
In a carbon atom, we have no lone pair of electrons and 4 unpaired electrons. When these 4 electrons are shared with those of other atoms, they produce a complete octet which perfectly mimics the noble gases.