Answer:
Step-by-step explanation:
From the given information:
r = 10 cos( θ)
r = 5
We are to find the the area of the region that lies inside the first curve and outside the second curve.
The first thing we need to do is to determine the intersection of the points in these two curves.
To do that :
let equate the two parameters together
So;
10 cos( θ) = 5
cos( θ) = 

Now, the area of the region that lies inside the first curve and outside the second curve can be determined by finding the integral . i.e









The diagrammatic expression showing the area of the region that lies inside the first curve and outside the second curve can be seen in the attached file below.
Answer:
x=2i, -2i
Step-by-step explanation:
Answer:
UNIF(2.66,3.33) minutes for all customer types.
Step-by-step explanation:
In the problem above, it was stated that the office arranged its customers into different sections to ensure optimum performance and minimize workload. Furthermore, there was a service time of UNIF(8,10) minutes for everyone. Since there are only three different types of customers, the service time can be estimated as UNIF(8/3,10/3) minutes = UNIF(2.66,3.33) minutes.
Answer:
0.105 or 21/200
Step-by-step explanation:
2/8= 0.375 cups
0.375x0.72= 0.27 cups or 27/100
0.375-0.27= 0.105