Answer:
-6/8
Step-by-step explanation:
Slope=y1-y2/x1-x2
Where (X1,y1) is (-11,5) and (X2,y2) is(5,-7)
Slope=5+7/-11-5
=-12/16
= -6/8
So the slope is -6/8
Answer:
Step-by-step explanation:
Graph 1:
A=(-9,5)
B=(7,4)
C=(-6,-3)
D=(0,-5)
E=(8,-8)
F=(0,7)
G=(0,-8)
H=(0,4)
I=(-3,-9)
J=(-4,2)
Graph 2:
K=(5,7)
L=(0,-9)
M=(1,3)
N=-7,-5)
O=(7,-1)
P=(0,-1)
Q=(2,-4)
R=(-9,6)
S=(-3,0)
T=(0,9)
Answer:
3rd option
Step-by-step explanation:
( factorise numerator and denominator )
3x² - 3 ← factor out 3 from each term
= 3(x² - 1²) ← x² - 1 is a difference of squares and factors in general as
a² - b² = (a - b)(a + b)
x² - 1
= x² - 1²
= (x - 1)(x + 1) , then
3x² - 3 = 3²(x - 1)(x + 1) ← in factored form
--------------------------------
x² - 5x + 4
consider the factors of the constant term (+ 4) which sum to give the coefficient of the x- term (- 5)
the factors are - 1 and - 4 , since
- 1 × - 4 = + 4 and - 1 - 4 = - 5 , then
x² - 5x + 4 = (x - 1)(x - 4)
then
=
← in factored form
Answer:
2 & +2i
Step-by-step explanation:
The two additional roots of the polynomial functions are:
1. 7-5 = 2
2. Irrational root of a polynomial functions are always in pairs, hence
- 2i will have +2i as its pair
Answer:
Step-by-step explanation:
The model fo the shell is given by the following equation of equilibrium:

This first-order differential equation has separable variables, which are cleared herein:

The solution of this integral is:
![t = -\frac{m}{2b}\cdot \left[\tan^{-1} \left(\frac{v}{\sqrt{\frac{m\cdot g}{b} } }\right) - \tan^{-1} \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } }\right)\right]](https://tex.z-dn.net/?f=t%20%3D%20-%5Cfrac%7Bm%7D%7B2b%7D%5Ccdot%20%5Cleft%5B%5Ctan%5E%7B-1%7D%20%5Cleft%28%5Cfrac%7Bv%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%5Cright%29%20-%20%5Ctan%5E%7B-1%7D%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%5Cright%29%5Cright%5D)

![\frac{v}{\sqrt{\frac{m\cdot g}{b} } }=\tan \left[-\frac{2\cdot b\cdot t}{m} + \tan^{-1}\left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\right]](https://tex.z-dn.net/?f=%5Cfrac%7Bv%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%3D%5Ctan%20%5Cleft%5B-%5Cfrac%7B2%5Ccdot%20b%5Ccdot%20t%7D%7Bm%7D%20%2B%20%5Ctan%5E%7B-1%7D%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%5Cright%5D)
![v = \sqrt{\frac{m\cdot g}{b} } \left [\frac{\tan \left(-\frac{2\cdot b \cdot t}{m} \right)+ \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)}{1 - \left(\frac{600}{\sqrt{\frac{m\cdot g}{b} } } \right)\cdot \tan \left(-\frac{2\cdot b \cdot t}{m} \right) }\right]](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%5Cleft%20%5B%5Cfrac%7B%5Ctan%20%5Cleft%28-%5Cfrac%7B2%5Ccdot%20b%20%5Ccdot%20t%7D%7Bm%7D%20%20%5Cright%29%2B%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%7D%7B1%20-%20%5Cleft%28%5Cfrac%7B600%7D%7B%5Csqrt%7B%5Cfrac%7Bm%5Ccdot%20g%7D%7Bb%7D%20%7D%20%7D%20%20%5Cright%29%5Ccdot%20%5Ctan%20%5Cleft%28-%5Cfrac%7B2%5Ccdot%20b%20%5Ccdot%20t%7D%7Bm%7D%20%20%5Cright%29%20%7D%5Cright%5D)