Answer:
However, various hydrogen isotopes, such as H-2, have one proton and one neutron; H-3 has one proton and two neutrons, etc. The sum of the protons and neutrons in an atom's nucleus is its atomic mass. Thus, the atomic mass of the H-2 isotope is two, the atomic mass of the H-3 isotope is three, and so forth.
Explanation:
Answer:
We know that
ħf = ф + Ekmax
where
ħ = planks constant = 6.626x10^-34 J s
f = frequency of incident light = 1.3x10^15 /s (1 Hz =
1/s)
ф = work function of the cesium = 2.14 eV
Ekmax = max kinetic energy of the emmitted electron.
We distinguish that:
1 eV = 1.602x10^-19 J
So:
2.14 eV x (1.602x10^-19 J / 1 eV) = 3.428x10^-19 J
So,
Ekmax = (6.626x10^-34 J s) x (1.3x10^15 / s) - 3.428x10^-19 J
= 8.6138x10^-19 J - 3.428x10^-19 J = 5.1858x10^-19 J
Answer:
5.19x10^-19 J
Kinetic energy:
In physics, the kinetic energy of an object is the energy that it owns due to its motion. It is defined as the work required accelerating a body of a given mass from rest to its specified velocity. Having expanded this energy during its acceleration, the body upholds this kinetic energy lest its speed changes.
Answer details:
Subject: Chemistry
Level: College
Keywords:
• Energy
• Kinetic energy
• Kinetic energy of emitted electrons
Learn more to evaluate:
brainly.com/question/4997492
brainly.com/question/4010464
brainly.com/question/1754173
Answer:
1422mg of acetaminophen
Explanation:
The maximum dose of acetaminophen is 15.0 mg of acetaminophen per kg of person.
To know the maximum single dosage of the person we need to convert the 209lb to kg (Using 1kg = 2.2046lb):
209lb * (1kg / 2.2046lb) = 94.8
The person weighs 94.8kg and the maximum single dosage for the person is:
94.8kg * (15.0mg acetaminophen / kg) =
1422mg of acetaminophen
Answer:
0.0010 mol·L⁻¹s⁻¹
Explanation:
Assume the rate law is
rate = k[A][B]²
If you are comparing two rates,
![\dfrac{\text{rate}_{2}}{\text{rate}_{1}} = \dfrac{k_{2}\text{[A]}_2[\text{B]}_{2}^{2}}{k_{1}\text{[A]}_1[\text{B]}_{1}^{2}}= \left (\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}}\right ) \left (\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}\right )^{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7Brate%7D_%7B2%7D%7D%7B%5Ctext%7Brate%7D_%7B1%7D%7D%20%3D%20%5Cdfrac%7Bk_%7B2%7D%5Ctext%7B%5BA%5D%7D_2%5B%5Ctext%7BB%5D%7D_%7B2%7D%5E%7B2%7D%7D%7Bk_%7B1%7D%5Ctext%7B%5BA%5D%7D_1%5B%5Ctext%7BB%5D%7D_%7B1%7D%5E%7B2%7D%7D%3D%20%5Cleft%20%28%5Cdfrac%7B%5Ctext%7B%5BA%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BA%5D%7D_%7B1%7D%7D%5Cright%20%29%20%5Cleft%20%28%5Cdfrac%7B%5Ctext%7B%5BB%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BB%5D%7D_%7B1%7D%7D%5Cright%20%29%5E%7B2%7D)
You are cutting each concentration in half, so
![\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}} = \dfrac{1}{2}\text{ and }\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}= \dfrac{1}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7B%5BA%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BA%5D%7D_%7B1%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%5Ctext%7B%20and%20%7D%5Cdfrac%7B%5Ctext%7B%5BB%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BB%5D%7D_%7B1%7D%7D%3D%20%5Cdfrac%7B1%7D%7B2%7D)
Then,

Answer: An igneous rock that cools rapidly is made of really small mineral crystals.
Explanation:
The layers inside the earth are hot enough to melt a rock. The liquid or molten rock is known as magma.
When a molten rock cools and solidifies, it results in the formation of an igneous rock.
The slow cooling of magma will result in the formation of an igneous rock with large crystals. Whereas, rapid cooling of lava will result in the formation of an igneous rock with small crystals.
Thus, it can be concluded that an igneous rock that cools rapidly is made of really small mineral crystals.