Answer:
A)
15 hours
B)
108 hours
C)
2074.29 miles
Step-by-step explanation:
Under the assumption the earth is a perfect circle, then in one complete rotation about its axis ( 24 hours) the Earth will cover 360 degrees or 2π radians.
A)
In every 24 hours the earth rotates through 360 degrees ( a complete rotation). We are required to determine the length of time it will take the Earth to rotate through 225 degrees. Let x be the duration it takes the earth to rotate through 225 degrees, then the following proportions hold;
(24/360) = (x/225)
solving for x;
x = (24/360) * 225 = 15 hours
B)
In 24 hours the earth rotates through an angle of 2π radians (a complete rotation) . We are required to determine the length of time it will take the Earth to rotate through 9π radians. Let x be the duration it takes the earth to rotate through 9π radians, then the following proportions hold;
(24/2π radians) = (x/9π radians)
Solving for x;
x = (24/2π radians)*9π radians = 108 hours
C)
If the diameter of the earth is 7920 miles, then in a day or 24 hours a point on the equator will rotate through a distance equal to the circumference of the Earth. Using the formula for the circumference of a circle;
circumference = 2*π*R = π*D
= 7920*3.142
= 24891.43 miles
Therefore a point on the equator covers a distance of 24891.43 miles in 24 hours. This will imply that the speed of the earth is approximately;
(24891.43miles)/(24 hours) = 1037.14 miles/hr
The distance covered by the point in 2 hours will thus be;
1037.14 * 2 = 2074.29 miles
It's the relation between the arc length of a circle, and the measure of angle. Before radians, we could only measure in degrees, and use pi to convert from arc length and circumference and angle measure. But, with the introduction of radians, it's much easier to map the relation. Hope it helps!
Answer:
y-6
Step-by-step explanation:
The correct answer is x^2-6x+8
Answer:
Hello There!
Your answer is 1/56
Step-by-step explanation:
1/7 (1/8)
You can literally just take out 7 and 8 and multiply than put it back to the proper denominator.
Hope this helps!!